These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2090313)

  • 21. Biomaterials and Regenerative Medicine in Urology.
    Davis NF; Cunnane EM; Quinlan MR; Mulvihill JJ; Lawrentschuk N; Bolton DM; Walsh MT
    Adv Exp Med Biol; 2018; 1107():189-198. PubMed ID: 29340876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural and synthetic biomaterials for controlled drug delivery.
    Kim JK; Kim HJ; Chung JY; Lee JH; Young SB; Kim YH
    Arch Pharm Res; 2014 Jan; 37(1):60-8. PubMed ID: 24197492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.
    Naderi H; Matin MM; Bahrami AR
    J Biomater Appl; 2011 Nov; 26(4):383-417. PubMed ID: 21926148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing biomaterials for application in artificial organs: impact of procedures, donor and patient properties.
    Vienken J
    Prilozi; 2008 Dec; 29(2):25-37. PubMed ID: 19259036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New directions in CNS drug delivery.
    Langer R; Brem H; Langer LF
    Neurobiol Aging; 1989; 10(5):642-4; discussion 648-50. PubMed ID: 2812246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends.
    Rahmati M; Pennisi CP; Budd E; Mobasheri A; Mozafari M
    Adv Exp Med Biol; 2018; 1119():1-19. PubMed ID: 30406362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations.
    Nandagawali ST; Yerramshetty JS; Akkus O
    J Biomed Mater Res A; 2007 Sep; 82(3):611-7. PubMed ID: 17315235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled delivery of drugs. A review of polymer-based devices.
    Brook IM; van Noort R
    Br Dent J; 1984 Jul; 157(1):11-5. PubMed ID: 6588977
    [No Abstract]   [Full Text] [Related]  

  • 34. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.
    Ambrosio AM; Allcock HR; Katti DS; Laurencin CT
    Biomaterials; 2002 Apr; 23(7):1667-72. PubMed ID: 11924588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applied machine learning as a driver for polymeric biomaterials design.
    McDonald SM; Augustine EK; Lanners Q; Rudin C; Catherine Brinson L; Becker ML
    Nat Commun; 2023 Aug; 14(1):4838. PubMed ID: 37563117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogels in a historical perspective: from simple networks to smart materials.
    Buwalda SJ; Boere KW; Dijkstra PJ; Feijen J; Vermonden T; Hennink WE
    J Control Release; 2014 Sep; 190():254-73. PubMed ID: 24746623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment.
    Senapati S; Shukla R; Tripathi YB; Mahanta AK; Rana D; Maiti P
    Mol Pharm; 2018 Feb; 15(2):679-694. PubMed ID: 29298488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Prolonged-release drug formulations for parenteral administration. Part II. Microspheres and implants for injection].
    Płaczek M; Jacyna J; Sznitowska M
    Pol Merkur Lekarski; 2014 Jan; 36(211):54-8. PubMed ID: 24645581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Educational goals for biomaterials science and engineering: prospective view.
    von Recum AF; LaBerge M
    J Appl Biomater; 1995; 6(2):137-44. PubMed ID: 7640441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.