These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2090361)

  • 1. Factors affecting solute entrapment in phospholipid vesicles prepared by the freeze-thaw extrusion method: a possible general method for improving the efficiency of entrapment.
    Chapman CJ; Erdahl WL; Taylor RW; Pfeiffer DR
    Chem Phys Lipids; 1990 Aug; 55(2):73-83. PubMed ID: 2090361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion.
    Chapman CJ; Erdahl WE; Taylor RW; Pfeiffer DR
    Chem Phys Lipids; 1991 Dec; 60(2):201-8. PubMed ID: 1814642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion.
    Castile JD; Taylor KM
    Int J Pharm; 1999 Oct; 188(1):87-95. PubMed ID: 10528086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-plate freeze concentration: Recovery of solutes occluded in the ice and determination of thawing time.
    Gulfo R; Auleda JM; Moreno FL; Ruiz Y; Hernández E; Raventós M
    Food Sci Technol Int; 2014 Sep; 20(6):405-19. PubMed ID: 23785068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentation into small vesicles of dioleoylphosphatidylcholine bilayers during freezing and thawing.
    MacDonald RC; Jones FD; Qiu R
    Biochim Biophys Acta; 1994 May; 1191(2):362-70. PubMed ID: 8172922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ action on the stability of egg phosphatidylcholine sonicated vesicles during freeze-thaw cycles.
    Bakás LS; Disalvo EA
    Cryobiology; 1991 Jun; 28(3):279-87. PubMed ID: 1864084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of the gradients performed by the freeze-thaw method.
    Centelles JJ; Franco R
    J Biochem Biophys Methods; 1989 May; 18(3):177-82. PubMed ID: 2732420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the mechanisms of mammalian cell killing by a freeze-thaw cycle: conditions that prevent cell killing using nucleated freezing.
    Shier WT
    Cryobiology; 1988 Apr; 25(2):110-20. PubMed ID: 3371056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective encapsulation of proteins into size-controlled phospholipid vesicles using freeze-thawing and extrusion.
    Sou K; Naito Y; Endo T; Takeoka S; Tsuchida E
    Biotechnol Prog; 2003; 19(5):1547-52. PubMed ID: 14524718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent binding of annexin 12 to phospholipid bilayers: stoichiometry and implications.
    Patel DR; Jao CC; Mailliard WS; Isas JM; Langen R; Haigler HT
    Biochemistry; 2001 Jun; 40(24):7054-60. PubMed ID: 11401549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicles of variable sizes produced by a rapid extrusion procedure.
    Mayer LD; Hope MJ; Cullis PR
    Biochim Biophys Acta; 1986 Jun; 858(1):161-8. PubMed ID: 3707960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer.
    MacDonald RI; MacDonald RC
    Biochim Biophys Acta; 1983 Nov; 735(2):243-51. PubMed ID: 6688739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of freeze-thawing on phospholipid/surfactant mixed bilayers.
    Oku N; Tsudera J; Kurohane K; Okada S
    Chem Pharm Bull (Tokyo); 1996 Oct; 44(10):1928-30. PubMed ID: 8904821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrostatic pressures developed by osmotically swelling vesicles bound to planar membranes.
    Niles WD; Cohen FS; Finkelstein A
    J Gen Physiol; 1989 Feb; 93(2):211-44. PubMed ID: 2467961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure.
    Cohen FS; Niles WD; Akabas MH
    J Gen Physiol; 1989 Feb; 93(2):201-10. PubMed ID: 2539429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment.
    Pidgeon C; McNeely S; Schmidt T; Johnson JE
    Biochemistry; 1987 Jan; 26(1):17-29. PubMed ID: 3828297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for the efficient entrapment of calcium in large unilamellar phospholipid vesicles.
    Veiro JA; Cullis PR
    Biochim Biophys Acta; 1990 Jun; 1025(1):109-15. PubMed ID: 2114930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures.
    Siow LF; Rades T; Lim MH
    Cryobiology; 2007 Dec; 55(3):210-21. PubMed ID: 17905224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane.
    Cohen FS; Akabas MH; Finkelstein A
    Science; 1982 Jul; 217(4558):458-60. PubMed ID: 6283637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.