BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2090366)

  • 1. Inhibition by transforming growth factor beta of choline acetyltransferase stimulation in a co-culture of spinal cord and muscle cells from mice.
    Kawata A; Nakane M; Deguchi T
    Brain Res Dev Brain Res; 1990 Dec; 57(1):129-37. PubMed ID: 2090366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fibronectin in the inhibitory effect of TGF-beta on choline acetyltransferase activity in co-cultures of spinal cord neurons and myotubes.
    Kengaku M; Kawata A; Kawashima S; Nakane M
    Brain Res Dev Brain Res; 1991 Aug; 61(2):281-4. PubMed ID: 1752045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of choline acetyltransferase activity in a co-culture of spinal cord and skeletal muscle cells is inhibited by myogenic differentiation inhibitors.
    Kengaku M; Kawashima S; Nakane M
    Brain Res Dev Brain Res; 1991 Jun; 60(2):133-6. PubMed ID: 1893562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium.
    Giller EL; Neale JH; Bullock PN; Schrier BK; Nelson PG
    J Cell Biol; 1977 Jul; 74(1):16-29. PubMed ID: 874000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of choline acetyltransferase by colchicine in primary cell cultures of spinal cord.
    Ishida I; Deguchi T
    J Neurochem; 1984 Jul; 43(1):42-8. PubMed ID: 6726256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice.
    Giller EL; Schrier BK; Shainberg A; Fisk HR; Nelson PG
    Science; 1973 Nov; 182(4112):588-9. PubMed ID: 4270498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of choline acetyltransferase in primary cell cultures of spinal cord by neurotransmitter L-norepinephrine.
    Ishida I; Deguchi T
    Brain Res; 1983 Mar; 283(1):13-23. PubMed ID: 6299476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2'-5') oligoadenylate synthetase and PKR.
    Salzberg S; Mandelboim M; Zalcberg M; Shainberg A
    Exp Cell Res; 1995 Jul; 219(1):223-32. PubMed ID: 7628537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choline acetyltransferase induction in cultured neurons: dissociated spinal cord cells are dependent on muscle cells, organotypic explants are not.
    Meyer T; Burkart W; Jockusch H
    Neurosci Lett; 1979 Jan; 11(1):59-62. PubMed ID: 431887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K-252a and staurosporine promote choline acetyltransferase activity in rat spinal cord cultures.
    Glicksman MA; Prantner JE; Meyer SL; Forbes ME; Dasgupta M; Lewis ME; Neff N
    J Neurochem; 1993 Jul; 61(1):210-21. PubMed ID: 8515268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of depolarizing agents on choline acetyltransferase and acetylcholinesterase activities in primary cell cultures of spinal cord.
    Ishida I; Deguchi T
    J Neurosci; 1983 Sep; 3(9):1818-23. PubMed ID: 6136555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor-alpha's effects on astroglial-cholinergic cell interactions in the medial septal area in vitro are mediated by alpha 2-macroglobulin.
    Mazzoni IE; Kenigsberg RL
    Neuroscience; 1997 Dec; 81(4):1019-30. PubMed ID: 9330364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures.
    Honegger P; Lenoir D
    Brain Res; 1982 Feb; 255(2):229-38. PubMed ID: 7055724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple neurotrophic factors from skeletal muscle: demonstration of effects of basic fibroblast growth factor and comparisons with the 22-kilodalton choline acetyltransferase development factor.
    McManaman J; Crawford F; Clark R; Richker J; Fuller F
    J Neurochem; 1989 Dec; 53(6):1763-71. PubMed ID: 2809590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukemia inhibitory factor (LIF) mediated increase of choline acetyltransferase activity in mouse spinal cord neurons in culture.
    Michikawa M; Kikuchi S; Kim SU
    Neurosci Lett; 1992 Jun; 140(1):75-7. PubMed ID: 1407704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of proliferating human skeletal muscle-derived cells in vitro: differential modulation of myoblast markers by TGF-beta2.
    Stewart JD; Masi TL; Cumming AE; Molnar GM; Wentworth BM; Sampath K; McPherson JM; Yaeger PC
    J Cell Physiol; 2003 Jul; 196(1):70-8. PubMed ID: 12767042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons.
    Schmidt-Achert KM; Askanas V; Engel WK
    J Neurochem; 1984 Aug; 43(2):586-9. PubMed ID: 6429281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-derived factors enhance cholinergic neuronal expression in the chick embryo--I. In ovo studies.
    Brodie C; Vernadakis A
    Int J Dev Neurosci; 1991; 9(4):405-13. PubMed ID: 1950654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neurite-promoting factor from muscle supports the survival of cultured chicken spinal motor neurons.
    Jeong SJ; Oh TH; Markelonis GJ
    J Neurobiol; 1991 Jul; 22(5):462-74. PubMed ID: 1716301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrical activity and trophic factors during cholinergic development in dissociated cultures.
    Brenneman DE
    Can J Physiol Pharmacol; 1986 Mar; 64(3):356-62. PubMed ID: 3708442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.