These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2090757)

  • 1. Selection of optimum defibrillation level. Energy-based, current-based, or impedance-based defibrillation.
    Charbonnier FM
    J Electrocardiol; 1990; 23 Suppl():29. PubMed ID: 2090757
    [No Abstract]   [Full Text] [Related]  

  • 2. Relationship between canine transthoracic impedance and defibrillation threshold. Evidence for current-based defibrillation.
    Lerman BB; Halperin HR; Tsitlik JE; Brin K; Clark CW; Deale OC
    J Clin Invest; 1987 Sep; 80(3):797-803. PubMed ID: 3624489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance to defibrillation countershock: does an optimal impedance exist?
    KenKnight BH; Eyüboğlu BM; Ideker RE
    Pacing Clin Electrophysiol; 1995 Nov; 18(11):2068-87. PubMed ID: 8552522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transthoracic defibrillation: importance of avoiding electrode placement directly on the female breast.
    Pagan-Carlo LA; Spencer KT; Robertson CE; Dengler A; Birkett C; Kerber RE
    J Am Coll Cardiol; 1996 Feb; 27(2):449-52. PubMed ID: 8557919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defibrillation current and impedance are determinants of defibrillation energy requirements.
    Dorian P; Wang MJ
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):1996-2001. PubMed ID: 2463578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmyocardial impedance during single and multiple internal ventricular defibrillation shocks.
    Peters W; Solingen S; Kobayashi Y; Scharf R; Mandel WJ; Gang ES
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H684-93. PubMed ID: 8067424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks.
    Kerber RE; Kouba C; Martins J; Kelly K; Low R; Hoyt R; Ferguson D; Bailey L; Bennett P; Charbonnier F
    Circulation; 1984 Aug; 70(2):303-8. PubMed ID: 6733884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated impedance-based energy adjustment for defibrillation: experimental studies.
    Kerber RE; McPherson D; Charbonnier F; Kieso R; Hite P
    Circulation; 1985 Jan; 71(1):136-40. PubMed ID: 3964715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-based transthoracic defibrillation.
    Kerber RE; Kieso RA; Kienzle MG; Olshansky B; Waldo AL; Carlson MD; Wilber DJ; Aschoff AM; Birger S; Charbonnier F
    Am J Cardiol; 1996 Nov; 78(10):1113-8. PubMed ID: 8914873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrospective evaluation of current-based impedance compensation defibrillation in out-of-hospital cardiac arrest.
    Chen B; Yin C; Ristagno G; Quan W; Tan Q; Freeman G; Li Y
    Resuscitation; 2013 May; 84(5):580-5. PubMed ID: 23000364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric defibrillation: current flow is improved by using "adult" electrode paddles.
    Atkins DL; Kerber RE
    Pediatrics; 1994 Jul; 94(1):90-3. PubMed ID: 8008545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ventilation phase on transthoracic impedance and defibrillation effectiveness.
    Ewy GA; Hellman DA; McClung S; Taren D
    Crit Care Med; 1980 Mar; 8(3):164-6. PubMed ID: 7363632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy requirements for defibrillation.
    Kerber RE
    Circulation; 1986 Dec; 74(6 Pt 2):IV117-9. PubMed ID: 3536158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of electrode design, lead configuration and impedance for successful low energy transcatheter atrial defibrillation in dogs.
    Kalman JM; Power JM; Chen JM; Farish SJ; Tonkin AM
    J Am Coll Cardiol; 1993 Oct; 22(4):1199-206. PubMed ID: 8409061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance-gradient electrode reduces skin irritation induced by transthoracic defibrillation.
    Meyer PF; Gadsby PD; Van Sickle D; Schoenlein WE; Foster KS; Graber GP
    Med Biol Eng Comput; 2005 Mar; 43(2):225-9. PubMed ID: 15865132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defibrillation probability and impedance change between shocks during resuscitation from out-of-hospital cardiac arrest.
    Walker RG; Koster RW; Sun C; Moffat G; Barger J; Dodson PP; Chapman FW
    Resuscitation; 2009 Jul; 80(7):773-7. PubMed ID: 19423211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External defibrillation: new technologies.
    Kerber RE
    Ann Emerg Med; 1984 Sep; 13(9 Pt 2):794-7. PubMed ID: 6476544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment.
    Kerber RE; Martins JB; Kienzle MG; Constantin L; Olshansky B; Hopson R; Charbonnier F
    Circulation; 1988 May; 77(5):1038-46. PubMed ID: 3359585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and energy in external cardiac defibrillation.
    Watson AB; Ellis MS
    Australas Phys Eng Sci Med; 1994 Dec; 17(4):206-10. PubMed ID: 7872902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quadriphasic waveforms are superior to triphasic waveforms for transthoracic defibrillation in a cardiac arrest swine model with high impedance.
    Zhang Y; Rhee B; Davies LR; Zimmerman MB; Snyder D; Jones JL; Kerber RE
    Resuscitation; 2006 Feb; 68(2):251-8. PubMed ID: 16325983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.