These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2091714)

  • 1. Intersession replicability of dipole parameters from three components of the auditory evoked magnetic field.
    Baumann SB; Rogers RL; Papanicolaou AC; Saydjari CL
    Brain Topogr; 1990; 3(2):311-9. PubMed ID: 2091714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed current analyses of bi-hemispheric magnetic N1m responses to ipsi/contralateral monaural stimuli from a single subject.
    Singh KD; Ioannides AA; Gray N; Kober H; Pongratz H; Daun A; Grummich P; Vieth J
    Electroencephalogr Clin Neurophysiol; 1994 Jul; 92(4):365-8. PubMed ID: 7517858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicability of MEG and EEG measures of the auditory N1/N1m-response.
    Virtanen J; Ahveninen J; Ilmoniemi RJ; Näätänen R; Pekkonen E
    Electroencephalogr Clin Neurophysiol; 1998 Apr; 108(3):291-8. PubMed ID: 9607518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The auditory evoked magnetic fields to very high frequency tones.
    Fujioka T; Kakigi R; Gunji A; Takeshima Y
    Neuroscience; 2002; 112(2):367-81. PubMed ID: 12044454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Right hemispheric dominancy in the auditory evoked magnetic fields for pure-tone stimuli].
    Kanno A; Nakasato N; Fujiwara S; Yoshimoto T
    No To Shinkei; 1996 Mar; 48(3):240-4. PubMed ID: 8868334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute tryptophan depletion decreases intensity dependence of auditory evoked magnetic N1/P2 dipole source activity.
    Kähkönen S; Jääskeläinen IP; Pennanen S; Liesivuori J; Ahveninen J
    Psychopharmacology (Berl); 2002 Nov; 164(2):221-7. PubMed ID: 12404086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization accuracy of single current dipoles from tangential components of auditory evoked fields.
    Kwon H; Lee YH; Kim JM; Park YK; Kuriki S
    Phys Med Biol; 2002 Dec; 47(23):4145-54. PubMed ID: 12502039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the auditory evoked magnetic fields during sleep.
    Naka D; Kakigi R; Hoshiyama M; Yamasaki H; Okusa T; Koyama S
    Neuroscience; 1999; 93(2):573-83. PubMed ID: 10465441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system.
    Nakasato N; Fujita S; Seki K; Kawamura T; Matani A; Tamura I; Fujiwara S; Yoshimoto T
    Electroencephalogr Clin Neurophysiol; 1995 Mar; 94(3):183-90. PubMed ID: 7536153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole.
    Elberling C; Bak C; Kofoed B; Lebech J; Saermark K
    Acta Neurol Scand; 1982 Jun; 65(6):553-69. PubMed ID: 7113662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle and long latency peak sources in auditory evoked magnetic fields for tone bursts in humans.
    Kanno A; Nakasato N; Murayama N; Yoshimoto T
    Neurosci Lett; 2000 Nov; 293(3):187-90. PubMed ID: 11036192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex.
    Gabriel D; Veuillet E; Ragot R; Schwartz D; Ducorps A; Norena A; Durrant JD; Bonmartin A; Cotton F; Collet L
    Hear Res; 2004 Nov; 197(1-2):55-64. PubMed ID: 15504604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuromagnetic study of selective auditory attention.
    Arthur DL; Lewis PS; Medvick PA; Flynn ER
    Electroencephalogr Clin Neurophysiol; 1991 May; 78(5):348-60. PubMed ID: 1711454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components.
    Neukirch M; Hegerl U; Kötitz R; Dorn H; Gallinat J; Herrmann WM
    Neuropsychobiology; 2002; 45(1):41-8. PubMed ID: 11803241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans.
    Kaiser J; Lutzenberger W
    Neurosci Lett; 2001 Nov; 314(1-2):17-20. PubMed ID: 11698136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source location of a 50 msec latency auditory evoked field component.
    Reite M; Teale P; Zimmerman J; Davis K; Whalen J
    Electroencephalogr Clin Neurophysiol; 1988 Dec; 70(6):490-8. PubMed ID: 2461283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss.
    Li LP; Shiao AS; Chen LF; Niddam DM; Chang SY; Lien CF; Lee SK; Hsieh JC
    Eur J Neurosci; 2006 Aug; 24(3):937-46. PubMed ID: 16930421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalent dipoles for middle latency auditory evoked potentials using the dipole tracing method.
    Nakagawa M; Yoshikawa H; Ando I; Ichikawa G
    Auris Nasus Larynx; 1999 Jul; 26(3):245-56. PubMed ID: 10419031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of center frequency and bandwidth on the auditory evoked magnetic field.
    Soeta Y; Nakagawa S; Matsuoka K
    Hear Res; 2006 Aug; 218(1-2):64-71. PubMed ID: 16797895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation.
    Pantev C; Lütkenhöner B; Hoke M; Lehnertz K
    Audiology; 1986; 25(1):54-61. PubMed ID: 3954684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.