These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2091797)

  • 1. Perfusion with heparin-coated equipment: potential for clinical use.
    von Segesser LK; Weiss BM; Turina MI
    Semin Thorac Cardiovasc Surg; 1990 Oct; 2(4):373-80. PubMed ID: 2091797
    [No Abstract]   [Full Text] [Related]  

  • 2. Heparin-bonded surfaces in extracorporeal membrane oxygenation for cardiac support.
    von Segesser LK
    Ann Thorac Surg; 1996 Jan; 61(1):330-5; discussion 340-1. PubMed ID: 8561600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiopulmonary bypass without systemic heparinization. Performance of heparin-coated oxygenators in comparison with classic membrane and bubble oxygenators.
    von Segesser LK; Turina M
    J Thorac Cardiovasc Surg; 1989 Sep; 98(3):386-96. PubMed ID: 2770320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deleterious effects of cardiopulmonary bypass on early graft function after single lung allotransplantation: evaluation of a heparin-coated bypass circuit.
    Francalancia NA; Aeba R; Yousem SA; Griffith BP; Marrone GC
    J Heart Lung Transplant; 1994; 13(3):498-507. PubMed ID: 8061027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfusion for pediatric open heart surgery.
    Elliott MJ
    Semin Thorac Cardiovasc Surg; 1990 Oct; 2(4):332-40. PubMed ID: 2091793
    [No Abstract]   [Full Text] [Related]  

  • 6. [The development of research on membrane oxgenator application].
    Wang L; Chen H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):240-4. PubMed ID: 17333931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The use of immobilized heparin in perfusion systems with membrane oxygenation during heart surgery].
    Cherkas DD; Skorik VI; Safonova ES; Novikova SP; Piatirechenko IA; Boiarkin AA; Kazakov SP; Shilov VV; Offengenden AI
    Anesteziol Reanimatol; 1990; (6):6-8. PubMed ID: 2075937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A look back.
    Horgan WJ
    Perfusion; 2000 Mar; 15(2):91-6. PubMed ID: 10789562
    [No Abstract]   [Full Text] [Related]  

  • 10. Preclinical evaluation of a new hollow fiber silicone membrane oxygenator for pediatric cardiopulmonary bypass: ex-vivo study.
    Kawahito S; Haraguchi S; Maeda T; Motomura T; Takano T; Nonaka K; Linneweber J; Ichikawa S; Kawamura M; Ishitoya H; Glueck J; Sato K; Nosé Y
    Ann Thorac Cardiovasc Surg; 2002 Feb; 8(1):7-11. PubMed ID: 11916436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiopulmonary bypass/extracorporeal membrane oxygenation/left heart bypass: indications, techniques, and complications.
    Ailawadi G; Zacour RK
    Surg Clin North Am; 2009 Aug; 89(4):781-96, vii-viii. PubMed ID: 19782837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracorporeal shunt: a theoretical approach to the prevention of arterial hyperoxia and the reduction of gaseous emboli during cardiopulmonary bypass.
    Weightman WM; Gibbs NM
    Anesth Analg; 1996 Mar; 82(3):672-3. PubMed ID: 8623987
    [No Abstract]   [Full Text] [Related]  

  • 13. Evaluation of a range of extracorporeal membrane oxygenators.
    Benak A
    Perfusion; 1991; 6(2):141-3. PubMed ID: 10149505
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass.
    Jegger D; Tevaearai HT; Mallabiabarrena I; Horisberger J; Seigneul I; von Segesser LK
    Artif Organs; 2007 Apr; 31(4):290-300. PubMed ID: 17437498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin-coated equipment reduces the risk of oxygenator failure.
    Wahba A; Philipp A; Behr R; Birnbaum DE
    Ann Thorac Surg; 1998 May; 65(5):1310-2. PubMed ID: 9594857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical study of biocompatibility between open and closed heparin-coated cardiopulmonary bypass circuits.
    Tanaka H; Oshiyama T; Narisawa T; Mori T; Masuda M; Kishi D; Kitou T; Miyazima S
    J Artif Organs; 2003; 6(4):245-52. PubMed ID: 14691666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal pump and heparin coating improves cardiopulmonary bypass biocompatibility.
    Moen O; Fosse E; Dregelid E; Brockmeier V; Andersson C; Høgåsen K; Venge P; Mollnes TE; Kierulf P
    Ann Thorac Surg; 1996 Oct; 62(4):1134-40. PubMed ID: 8823102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An apparatus for artificial circulation in laboratory animals].
    Lanovenko II; Adamenko NP
    Fiziol Zh (1978); 1990; 36(1):104-6. PubMed ID: 2323438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of heparin-coated circuits on hemodynamics during and after cardiopulmonary bypass.
    de Vroege R; Huybregts R; van Oeveren W; van Klarenbosch J; Linley G; Mutlu J; Jansen E; Hack E; Eijsman L; Wildevuur C
    Artif Organs; 2005 Jun; 29(6):490-7. PubMed ID: 15926987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More biocompatibility in cardiopulmonary bypass for high-risk patients.
    Baufreton C
    Ann Thorac Surg; 2006 Feb; 81(2):790-1; author reply 791. PubMed ID: 16427917
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.