These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20919749)

  • 1. Effect of oligosaccharides and their monosaccharide mixtures on the stability of proteins: a scaled particle study.
    Poddar NK; Ansari ZA; Singh RK; Moosavi Movahedi AA; Ahmad F
    J Biomol Struct Dyn; 2010 Dec; 28(3):331-41. PubMed ID: 20919749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of monomeric and oligomeric sugar osmolytes on DeltaGD, the Gibbs energy of stabilization of the protein at different pH values: is the sum effect of monosaccharide individually additive in a mixture?
    Poddar NK; Ansari ZA; Singh RK; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2008 Dec; 138(3):120-9. PubMed ID: 18835508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory.
    O'Connor TF; Debenedetti PG; Carbeck JD
    Biophys Chem; 2007 Apr; 127(1-2):51-63. PubMed ID: 17234323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein stability: functional dependence of denaturational Gibbs energy on urea concentration.
    Gupta R; Ahmad F
    Biochemistry; 1999 Feb; 38(8):2471-9. PubMed ID: 10029541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory.
    Beg I; Minton AP; Islam A; Hassan MI; Ahmad F
    Biophys Chem; 2018 Jun; 237():31-37. PubMed ID: 29635149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Stabilization of Proteins by Mono- and Oligosaccharides: Measurement and Analysis in the Context of an Excluded Volume Model.
    Beg I; Minton AP; Hassan I; Islam A; Ahmad F
    Biochemistry; 2015 Jun; 54(23):3594-603. PubMed ID: 26000826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins.
    Rahman S; Ali SA; Islam A; Hassan MI; Ahmad F
    Arch Biochem Biophys; 2016 Feb; 591():7-17. PubMed ID: 26686265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The three states of globular proteins: acid denaturation.
    Alonso DO; Dill KA; Stigter D
    Biopolymers; 1991 Nov; 31(13):1631-49. PubMed ID: 1814509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crucial importance of translational entropy of water in pressure denaturation of proteins.
    Harano Y; Kinoshita M
    J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmolyte-induced changes in protein conformational equilibria.
    Saunders AJ; Davis-Searles PR; Allen DL; Pielak GJ; Erie DA
    Biopolymers; 2000 Apr; 53(4):293-307. PubMed ID: 10685050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular mechanism for osmolyte-induced protein stability.
    Street TO; Bolen DW; Rose GD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):13997-4002. PubMed ID: 16968772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction of monosaccharide binding free energies to lectins with linear interaction energy models.
    Mishra SK; Sund J; Åqvist J; Koča J
    J Comput Chem; 2012 Nov; 33(29):2340-50. PubMed ID: 22847637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH and temperature on the structural and thermodynamic character of alpha-syn12 peptide in aqueous solution.
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2010 Dec; 28(3):343-53. PubMed ID: 20919750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of the interaction of RbCl with some monosaccharides (D-glucose, D-galactose, D-xylose, and D-arabinose) in aqueous solutions at 298.15K.
    Jiang Y; Hu M; Li S; Wang J; Zhuo K
    Carbohydr Res; 2006 Feb; 341(2):262-9. PubMed ID: 16330007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The analysis of glycosylation: a continued need for high pH anion exchange chromatography.
    Behan JL; Smith KD
    Biomed Chromatogr; 2011 Jan; 25(1-2):39-46. PubMed ID: 20821735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sugars on the thermal stability of a protein.
    Oshima H; Kinoshita M
    J Chem Phys; 2013 Jun; 138(24):245101. PubMed ID: 23822280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.