BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20920425)

  • 1. Bioluminescence imaging of glucose in tissue surrounding polyurethane and glucose sensor implants.
    Prichard HL; Schroeder T; Reichert WM; Klitzman B
    J Diabetes Sci Technol; 2010 Sep; 4(5):1055-62. PubMed ID: 20920425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IFATS collection: Adipose-derived stromal cells improve the foreign body response.
    Prichard HL; Reichert W; Klitzman B
    Stem Cells; 2008 Oct; 26(10):2691-5. PubMed ID: 18436858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of long-term performance of minimally invasive glucose biosensors.
    Yu B; Ju Y; West L; Moussy Y; Moussy F
    Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial growth factor overexpression positively modulates the characteristics of periprosthetic tissue of polyurethane-coated silicone breast implant in rats.
    Vieira VJ; d'Acampora AJ; Marcos ABW; Di Giunta G; de Vasconcellos ZAA; Bins-Ely J; d'Eça Neves R; Figueiredo CP
    Plast Reconstr Surg; 2010 Dec; 126(6):1899-1910. PubMed ID: 21124130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of hydrogel coating to improve the performance of implanted glucose sensors.
    Yu B; Wang C; Ju YM; West L; Harmon J; Moussy Y; Moussy F
    Biosens Bioelectron; 2008 Mar; 23(8):1278-84. PubMed ID: 18182283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.
    Vallejo-Heligon SG; Brown NL; Reichert WM; Klitzman B
    Acta Biomater; 2016 Jan; 30():106-115. PubMed ID: 26537203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyte flux at a biomaterial-tissue interface over time: implications for sensors for type 1 and 2 diabetes mellitus.
    Ekberg NR; Brismar K; Malmstedt J; Hedblad MA; Adamson U; Ungerstedt U; Wisniewski N
    J Diabetes Sci Technol; 2010 Sep; 4(5):1063-72. PubMed ID: 20920426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of hyperglycaemia by a subcutaneously-implanted glucose sensor in the rat.
    Ward WK; Wilgus ES; Troupe JE
    Biosens Bioelectron; 1994; 9(6):423-8. PubMed ID: 7917181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors.
    Vallejo-Heligon SG; Klitzman B; Reichert WM
    Acta Biomater; 2014 Nov; 10(11):4629-4638. PubMed ID: 25065548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the composition of human skin for glucose sensor development.
    Groenendaal W; von Basum G; Schmidt KA; Hilbers PA; van Riel NA
    J Diabetes Sci Technol; 2010 Sep; 4(5):1032-40. PubMed ID: 20920423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation.
    Novak MT; Yuan F; Reichert WM
    Anal Bioanal Chem; 2010 Oct; 398(4):1695-705. PubMed ID: 20803006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane.
    Yu B; Long N; Moussy Y; Moussy F
    Biosens Bioelectron; 2006 Jun; 21(12):2275-82. PubMed ID: 16330201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological preparation for studying the response of subcutaneously implanted glucose and oxygen sensors.
    Ertefai S; Gough DA
    J Biomed Eng; 1989 Sep; 11(5):362-8. PubMed ID: 2677523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors.
    Koudelka M; Rohner-Jeanrenaud F; Terrettaz J; Bobbioni-Harsch E; de Rooij NF; Jeanrenaud B
    Biosens Bioelectron; 1991; 6(1):31-6. PubMed ID: 2049169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo analytical performance of nitric oxide-releasing glucose biosensors.
    Soto RJ; Privett BJ; Schoenfisch MH
    Anal Chem; 2014 Jul; 86(14):7141-9. PubMed ID: 24984031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.
    Croce RA; Vaddiraju S; Papadimitrakopoulos F; Jain FC
    Sensors (Basel); 2012 Oct; 12(10):13402-16. PubMed ID: 23202001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose sensor with improved haemocompatibilty.
    Yang Y; Zhang SF; Kingston MA; Jones G; Wright G; Spencer SA
    Biosens Bioelectron; 2000 Aug; 15(5-6):221-7. PubMed ID: 11219733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the effects of tissue reactions on the function of implanted glucose sensors.
    Dungel P; Long N; Yu B; Moussy Y; Moussy F
    J Biomed Mater Res A; 2008 Jun; 85(3):699-706. PubMed ID: 17876777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-releasing sol-gel particle/polyurethane glucose biosensors.
    Shin JH; Marxer SM; Schoenfisch MH
    Anal Chem; 2004 Aug; 76(15):4543-9. PubMed ID: 15283600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.