BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20920472)

  • 21. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes.
    Cline GW; Petersen KF; Krssak M; Shen J; Hundal RS; Trajanoski Z; Inzucchi S; Dresner A; Rothman DL; Shulman GI
    N Engl J Med; 1999 Jul; 341(4):240-6. PubMed ID: 10413736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle glycogen content in type 2 diabetes mellitus.
    He J; Kelley DE
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E1002-7. PubMed ID: 15251866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial function in skeletal muscle in type 2 diabetes.
    Rabøl R
    Dan Med Bull; 2011 Apr; 58(4):B4272. PubMed ID: 21466770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance.
    Abdul-Ghani MA; Muller FL; Liu Y; Chavez AO; Balas B; Zuo P; Chang Z; Tripathy D; Jani R; Molina-Carrion M; Monroy A; Folli F; Van Remmen H; DeFronzo RA
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E678-85. PubMed ID: 18593850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adiponectin decreases pyruvate dehydrogenase kinase 4 gene expression in obese- and diabetic-derived myotubes.
    McAinch AJ; Cameron-Smith D
    Diabetes Obes Metab; 2009 Jul; 11(7):721-8. PubMed ID: 19527483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type 2 diabetes mellitus and skeletal muscle metabolic function.
    Phielix E; Mensink M
    Physiol Behav; 2008 May; 94(2):252-8. PubMed ID: 18342897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WY-14643 and 9- cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients.
    Bouzakri K; Roques M; Debard C; Berbe V; Rieusset J; Laville M; Vidal H
    Diabetologia; 2004 Jul; 47(7):1314-23. PubMed ID: 15292987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects.
    Abu Bakar MH; Sarmidi MR
    Mol Biosyst; 2017 Aug; 13(9):1838-1853. PubMed ID: 28726959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes.
    Zorzano A; Liesa M; Palacín M
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1846-54. PubMed ID: 19703653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-cell function and mass in type 2 diabetes.
    Larsen MO
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty liver and insulin resistance in obese Zucker rats: no role for mitochondrial dysfunction.
    Flamment M; Arvier M; Gallois Y; Simard G; Malthièry Y; Ritz P; Ducluzeau PH
    Biochimie; 2008 Sep; 90(9):1407-13. PubMed ID: 18534199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. cGMP rescues mitochondrial dysfunction induced by glucose and insulin in myocytes.
    Mitsuishi M; Miyashita K; Itoh H
    Biochem Biophys Res Commun; 2008 Mar; 367(4):840-5. PubMed ID: 18194668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes.
    Gaster M; Rustan AC; Aas V; Beck-Nielsen H
    Diabetes; 2004 Mar; 53(3):542-8. PubMed ID: 14988236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants.
    Abdul-Ghani MA; Jani R; Chavez A; Molina-Carrion M; Tripathy D; Defronzo RA
    Diabetologia; 2009 Apr; 52(4):574-82. PubMed ID: 19183935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of serial cell passaging in the retention of fiber type and mitochondrial content in primary human myotubes.
    Covington JD; Myland CK; Rustan AC; Ravussin E; Smith SR; Bajpeyi S
    Obesity (Silver Spring); 2015 Dec; 23(12):2414-20. PubMed ID: 26538189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods.
    Thingholm TE; Bak S; Beck-Nielsen H; Jensen ON; Gaster M
    Mol Cell Proteomics; 2011 Sep; 10(9):M110.006650. PubMed ID: 21697546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes.
    Gundersen AE; Kugler BA; McDonald PM; Veraksa A; Houmard JA; Zou K
    Appl Physiol Nutr Metab; 2020 Mar; 45(3):283-293. PubMed ID: 31356754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.
    Aguer C; Gambarotta D; Mailloux RJ; Moffat C; Dent R; McPherson R; Harper ME
    PLoS One; 2011; 6(12):e28536. PubMed ID: 22194845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells.
    Kopp EL; Deussen DN; Cuomo R; Lorenz R; Roth DM; Mahata SK; Patel HH
    Cells; 2023 Dec; 12(24):. PubMed ID: 38132105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.