These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 20920510)
1. Mitochondrial complex II participates in normoxic and hypoxic regulation of α-keto acids in the murine heart. Mühling J; Tiefenbach M; López-Barneo J; Piruat JI; García-Flores P; Pfeil U; Gries B; Mühlfeld C; Weigand MA; Kummer W; Weissmann N; Paddenberg R J Mol Cell Cardiol; 2010 Dec; 49(6):950-61. PubMed ID: 20920510 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra- but not of pre-acinar arteries. Paddenberg R; Tiefenbach M; Faulhammer P; Goldenberg A; Gries B; Pfeil U; Lips KS; Piruat JI; López-Barneo J; Schermuly RT; Weissmann N; Kummer W Cardiovasc Res; 2012 Mar; 93(4):702-10. PubMed ID: 22215723 [TBL] [Abstract][Full Text] [Related]
3. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Guzy RD; Sharma B; Bell E; Chandel NS; Schumacker PT Mol Cell Biol; 2008 Jan; 28(2):718-31. PubMed ID: 17967865 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial complex II regulates a distinct oxygen sensing mechanism in monocytes. Sharma S; Wang J; Cortes Gomez E; Taggart RT; Baysal BE Hum Mol Genet; 2017 Apr; 26(7):1328-1339. PubMed ID: 28204537 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Nebigil CG; Jaffré F; Messaddeq N; Hickel P; Monassier L; Launay JM; Maroteaux L Circulation; 2003 Jul; 107(25):3223-9. PubMed ID: 12810613 [TBL] [Abstract][Full Text] [Related]
7. Phenotypic dichotomy in mitochondrial complex II genetic disorders. Baysal BE; Rubinstein WS; Taschner PE J Mol Med (Berl); 2001 Sep; 79(9):495-503. PubMed ID: 11692162 [TBL] [Abstract][Full Text] [Related]
8. A conditional mouse mutant in the tumor suppressor SdhD gene unveils a link between p21(WAF1/Cip1) induction and mitochondrial dysfunction. Millán-Uclés A; Díaz-Castro B; García-Flores P; Báez A; Pérez-Simón JA; López-Barneo J; Piruat JI PLoS One; 2014; 9(1):e85528. PubMed ID: 24465590 [TBL] [Abstract][Full Text] [Related]
9. Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. Jackson CB; Nuoffer JM; Hahn D; Prokisch H; Haberberger B; Gautschi M; Häberli A; Gallati S; Schaller A J Med Genet; 2014 Mar; 51(3):170-5. PubMed ID: 24367056 [TBL] [Abstract][Full Text] [Related]
10. Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia. Bohuslavová R; Kolář F; Kuthanová L; Neckář J; Tichopád A; Pavlinkova G J Appl Physiol (1985); 2010 Oct; 109(4):1195-202. PubMed ID: 20634361 [TBL] [Abstract][Full Text] [Related]
11. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Redout EM; Wagner MJ; Zuidwijk MJ; Boer C; Musters RJ; van Hardeveld C; Paulus WJ; Simonides WS Cardiovasc Res; 2007 Sep; 75(4):770-81. PubMed ID: 17582388 [TBL] [Abstract][Full Text] [Related]
12. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Piruat JI; Pintado CO; Ortega-Sáenz P; Roche M; López-Barneo J Mol Cell Biol; 2004 Dec; 24(24):10933-40. PubMed ID: 15572694 [TBL] [Abstract][Full Text] [Related]
13. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Puisségur MP; Mazure NM; Bertero T; Pradelli L; Grosso S; Robbe-Sermesant K; Maurin T; Lebrigand K; Cardinaud B; Hofman V; Fourre S; Magnone V; Ricci JE; Pouysségur J; Gounon P; Hofman P; Barbry P; Mari B Cell Death Differ; 2011 Mar; 18(3):465-78. PubMed ID: 20885442 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Baysal BE Biochim Biophys Acta; 2013 May; 1827(5):573-7. PubMed ID: 23291190 [TBL] [Abstract][Full Text] [Related]
15. Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia. Rouet-Benzineb P; Eddahibi S; Raffestin B; Laplace M; Depond S; Adnot S; Crozatier B J Mol Cell Cardiol; 1999 Sep; 31(9):1697-708. PubMed ID: 10471353 [TBL] [Abstract][Full Text] [Related]
16. Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues. Sadeesh EM; Malik A; Lahamge MS; Singh P Mol Biol Rep; 2024 Oct; 51(1):1071. PubMed ID: 39425877 [TBL] [Abstract][Full Text] [Related]
17. Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36. Manakov D; Kolar D; Zurmanova J; Pravenec M; Novotny J J Physiol Biochem; 2018 Aug; 74(3):479-489. PubMed ID: 29916179 [TBL] [Abstract][Full Text] [Related]
18. Hypobaric hypoxia affects endogenous levels of alpha-keto acids in murine heart ventricles. Mühling J; Paddenberg R; Hempelmann G; Kummer W Biochem Biophys Res Commun; 2006 Apr; 342(3):935-9. PubMed ID: 16598846 [TBL] [Abstract][Full Text] [Related]
20. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. Douwes Dekker PB; Hogendoorn PC; Kuipers-Dijkshoorn N; Prins FA; van Duinen SG; Taschner PE; van der Mey AG; Cornelisse CJ J Pathol; 2003 Nov; 201(3):480-6. PubMed ID: 14595761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]