BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20920523)

  • 1. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste.
    Puri M; Kaur A; Schwarz WH; Singh S; Kennedy JF
    Int J Biol Macromol; 2011 Jan; 48(1):58-62. PubMed ID: 20920523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of an alpha-L-rhamnosidase from Pichia angusta X349.
    Yanai T; Sato M
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2179-85. PubMed ID: 11129592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-L-rhamnosidase from Aspergillus clavato-nanicus MTCC-9611 active at alkaline pH.
    Yadav V; Yadav S; Yadav S; Yadav KD
    Prikl Biokhim Mikrobiol; 2012; 48(3):328-33. PubMed ID: 22834305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an α-L-Rhamnosidase from Streptomyces avermitilis.
    Ichinose H; Fujimoto Z; Kaneko S
    Biosci Biotechnol Biochem; 2013; 77(1):213-6. PubMed ID: 23291751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell surface engineering of α-l-rhamnosidase for naringin hydrolysis.
    Liu Q; Lu L; Xiao M
    Bioresour Technol; 2012 Nov; 123():144-9. PubMed ID: 22940311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal inactivation and product inhibition of Aspergillus terreus CECT 2663 alpha-L-rhamnosidase and their role on hydrolysis of naringin solutions.
    Soria F; Ellenrieder G
    Biosci Biotechnol Biochem; 2002 Jul; 66(7):1442-9. PubMed ID: 12224626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-L-rhamnosidase and β-D-glucosidase activities in fungal strains isolated from alkaline soils and their potential in naringin hydrolysis.
    Elíades LA; Rojas NL; Cabello MN; Voget CE; Saparrat MC
    J Basic Microbiol; 2011 Dec; 51(6):659-65. PubMed ID: 21952976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts.
    Shin KC; Nam HK; Oh DK
    J Agric Food Chem; 2013 Nov; 61(47):11532-40. PubMed ID: 24188428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an alpha-L-rhamnosidase from Aspergillus kawachii and its gene.
    Koseki T; Mese Y; Nishibori N; Masaki K; Fujii T; Handa T; Yamane Y; Shiono Y; Murayama T; Iefuji H
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):1007-13. PubMed ID: 18633609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous Expression and Characterization of a New Clade of Aspergillus α-L-Rhamnosidase Suitable for Citrus Juice Processing.
    Li L; Gong J; Wang S; Li G; Gao T; Jiang Z; Cheng YS; Ni H; Li Q
    J Agric Food Chem; 2019 Mar; 67(10):2926-2935. PubMed ID: 30789260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus.
    Rojas NL; Voget CE; Hours RA; Cavalitto SF
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1515-22. PubMed ID: 21221705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of Aspergillus oryzae recombinant α-l-rhamnosidase expressed in Pichia pastoris.
    Ishikawa M; Shiono Y; Koseki T
    J Biosci Bioeng; 2017 Dec; 124(6):630-634. PubMed ID: 28800907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1.
    Cui Z; Maruyama Y; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2007 Nov; 374(2):384-98. PubMed ID: 17936784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of various processes used for removal of bitterness from kinnow pomace and kinnow pulp residue.
    Singla G; Singh U; Sangwan RS; Panesar PS; Krishania M
    Food Chem; 2021 Jan; 335():127643. PubMed ID: 32745841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of alpha-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium.
    Jang IS; Kim DH
    Biol Pharm Bull; 1996 Dec; 19(12):1546-9. PubMed ID: 8996636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase.
    Zverlov VV; Hertel C; Bronnenmeier K; Hroch A; Kellermann J; Schwarz WH
    Mol Microbiol; 2000 Jan; 35(1):173-9. PubMed ID: 10632887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Racemization at C-2 of naringin in sour oranges with increasing maturity determined by chiral high-performance liquid chromatography.
    Caccamese S; Bianca S; Santo D
    J Agric Food Chem; 2007 May; 55(10):3816-22. PubMed ID: 17417869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli.
    Oh KW; Kim MJ; Kim HY; Kim BY; Baik MY; Auh JH; Park CS
    FEMS Microbiol Lett; 2005 Nov; 252(1):175-81. PubMed ID: 16198511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical properties of alpha-amylase from peel of Citrus sinensis cv. Abosora.
    Mohamed SA; Drees EA; El-Badry MO; Fahmy AS
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2054-65. PubMed ID: 19941088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetic characteristics of alpha-L-rhamnosidase of Eupenicillium erubescens].
    Gudzenko EV; Varbanets LD
    Mikrobiol Z; 2013; 75(5):27-32. PubMed ID: 24479310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.