These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20920554)

  • 1. Modulation of spindle discharge from jaw-closing muscles during chewing foods of different hardness in awake rabbits.
    Zakir HM; Kitagawa J; Yamada Y; Kurose M; Mostafeezur RM; Yamamura K
    Brain Res Bull; 2010 Nov; 83(6):380-6. PubMed ID: 20920554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of muscle spindle afferents in the control of jaw-closing muscle activity].
    Nagashima T
    Osaka Daigaku Shigaku Zasshi; 1989 Jun; 34(1):125-41. PubMed ID: 2637346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of food consistency on the pattern of extrinsic tongue muscle activities during mastication in freely moving rabbits.
    Inoue M; Harasawa Y; Yamamura K; Ariyasinghe S; Yamada Y
    Neurosci Lett; 2004 Sep; 368(2):192-6. PubMed ID: 15351447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrinsic tongue and suprahyoid muscle activities during mastication in freely feeding rabbits.
    Inoue M; Ariyasinghe S; Yamamura K; Harasawa Y; Yamada Y
    Brain Res; 2004 Sep; 1021(2):173-82. PubMed ID: 15342265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys.
    Goodwin GM; Luschei ES
    J Neurophysiol; 1975 May; 38(3):560-71. PubMed ID: 123950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit.
    Hidaka O; Morimoto T; Kato T; Masuda Y; Inoue T; Takada K
    J Neurophysiol; 1999 Nov; 82(5):2633-40. PubMed ID: 10561432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mastication-induced modulation of the jaw-opening reflex during different periods of mastication in awake rabbits.
    Mostafeezur R; Yamamura K; Kurose M; Yamada Y
    Brain Res; 2009 Feb; 1254():28-37. PubMed ID: 19094972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A role of periodontal afferents in the control of jaw-closing muscle activities].
    Saito O
    Osaka Daigaku Shigaku Zasshi; 1990 Jun; 35(1):268-86. PubMed ID: 2135408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open-close movements in humans.
    van der Bilt A; Ottenhoff FA; van der Glas HW; Bosman F; Abbink JH
    J Dent Res; 1997 Apr; 76(4):839-47. PubMed ID: 9126179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for functional compartmentalization of trigeminal muscle spindle afferents during fictive mastication in the rabbit.
    Westberg KG; Kolta A; Clavelou P; Sandström G; Lund JP
    Eur J Neurosci; 2000 Apr; 12(4):1145-54. PubMed ID: 10762346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bolus hardness on the chewing pattern and activation of masticatory muscles in subjects with normal dental occlusion.
    Piancino MG; Bracco P; Vallelonga T; Merlo A; Farina D
    J Electromyogr Kinesiol; 2008 Dec; 18(6):931-7. PubMed ID: 17616401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between food mixing ability and electromyographic activity of jaw-closing muscles during chewing of a wax cube.
    Fueki K; Sugiura T; Yoshida E; Igarashi Y
    J Oral Rehabil; 2008 May; 35(5):345-52. PubMed ID: 18405270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of peri-oral facial muscles and its coordination with jaw muscles during ingestive behavior in awake rabbits.
    Ootaki S; Yamamura K; Inoue M; Amarasena JK; Kurose M; Yamada Y
    Brain Res; 2004 Mar; 1001(1-2):22-36. PubMed ID: 14972651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of food consistency on jaw movement and posterior temporalis and inferior orbicularis oris muscle activities during chewing in children.
    Takada K; Miyawaki S; Tatsuta M
    Arch Oral Biol; 1994 Sep; 39(9):793-805. PubMed ID: 7802615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated actions of masticatory muscles: simultaneous EMG from eight intramuscular electrodes.
    Vitti M; Basmajian JV
    Anat Rec; 1977 Feb; 187(2):173-89. PubMed ID: 848775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles.
    Grigoriadis A; Johansson RS; Trulsson M
    J Oral Rehabil; 2014 May; 41(5):367-73. PubMed ID: 24612326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A comparative study between cortically induced fictive mastication and actual mastication in acute and chronic rabbits].
    Liu ZJ; Wang HY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1994 Sep; 29(5):305-8, 320. PubMed ID: 7743868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of jaw muscle spindle discharge during mastication in the rabbit.
    Masuda Y; Morimoto T; Hidaka O; Kato T; Matsuo R; Inoue T; Kobayashi M; Taylor A
    J Neurophysiol; 1997 Apr; 77(4):2227-31. PubMed ID: 9114272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of intrinsic and extrinsic tongue muscles in feeding: electromyographic study in pigs.
    Kayalioglu M; Shcherbatyy V; Seifi A; Liu ZJ
    Arch Oral Biol; 2007 Aug; 52(8):786-96. PubMed ID: 17350586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods.
    Peyron MA; Lassauzay C; Woda A
    Exp Brain Res; 2002 Jan; 142(1):41-51. PubMed ID: 11797083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.