These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

811 related articles for article (PubMed ID: 20920788)

  • 1. Regulation of tau pathology by the microglial fractalkine receptor.
    Bhaskar K; Konerth M; Kokiko-Cochran ON; Cardona A; Ransohoff RM; Lamb BT
    Neuron; 2010 Oct; 68(1):19-31. PubMed ID: 20920788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology.
    Maphis N; Jiang S; Xu G; Kokiko-Cochran ON; Roy SM; Van Eldik LJ; Watterson DM; Lamb BT; Bhaskar K
    Alzheimers Res Ther; 2016 Dec; 8(1):54. PubMed ID: 27974048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain.
    Maphis N; Xu G; Kokiko-Cochran ON; Jiang S; Cardona A; Ransohoff RM; Lamb BT; Bhaskar K
    Brain; 2015 Jun; 138(Pt 6):1738-55. PubMed ID: 25833819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically enhancing the expression of chemokine domain of CX
    Bemiller SM; Maphis NM; Formica SV; Wilson GN; Miller CM; Xu G; Kokiko-Cochran ON; Kim KW; Jung S; Cannon JL; Crish SD; Cardona AE; Lamb BT; Bhaskar K
    J Neuroinflammation; 2018 Sep; 15(1):278. PubMed ID: 30253780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of LPS-induced tau hyperphosphorylation by serum amyloid A.
    Liu J; Wang D; Li SQ; Yu Y; Ye RD
    J Neuroinflammation; 2016 Feb; 13():28. PubMed ID: 26838764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-10 deficiency exacerbates inflammation-induced tau pathology.
    Weston LL; Jiang S; Chisholm D; Jantzie LL; Bhaskar K
    J Neuroinflammation; 2021 Jul; 18(1):161. PubMed ID: 34275478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway.
    Li Y; Liu L; Barger SW; Griffin WS
    J Neurosci; 2003 Mar; 23(5):1605-11. PubMed ID: 12629164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microglial/macrophage GRK2 determines duration of peripheral IL-1beta-induced hyperalgesia: contribution of spinal cord CX3CR1, p38 and IL-1 signaling.
    Willemen HLDM; Eijkelkamp N; Wang H; Dantzer R; Dorn GW; Kelley KW; Heijnen CJ; Kavelaars A
    Pain; 2010 Sep; 150(3):550-560. PubMed ID: 20609517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons.
    Hosmane S; Tegenge MA; Rajbhandari L; Uapinyoying P; Ganesh Kumar N; Thakor N; Venkatesan A
    J Neurosci; 2012 May; 32(22):7745-57. PubMed ID: 22649252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway.
    Lee S; Xu G; Jay TR; Bhatta S; Kim KW; Jung S; Landreth GE; Ransohoff RM; Lamb BT
    J Neurosci; 2014 Sep; 34(37):12538-46. PubMed ID: 25209291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies.
    Castro-Sánchez S; García-Yagüe ÁJ; Kügler S; Lastres-Becker I
    Redox Biol; 2019 Apr; 22():101118. PubMed ID: 30769286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of CX3CR1 and Fractalkine Chemokines in Amyloid Beta Clearance and p-Tau Accumulation in Alzheimer's Disease (AD) Rodent Models: Is Fractalkine a Systemic Biomarker for AD?
    Merino JJ; Muñetón-Gómez V; Alvárez MI; Toledano-Díaz A
    Curr Alzheimer Res; 2016; 13(4):403-12. PubMed ID: 26567742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of tau rescues inflammation-mediated neurodegeneration.
    Maphis N; Xu G; Kokiko-Cochran ON; Cardona AE; Ransohoff RM; Lamb BT; Bhaskar K
    Front Neurosci; 2015; 9():196. PubMed ID: 26089772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide.
    Corona AW; Huang Y; O'Connor JC; Dantzer R; Kelley KW; Popovich PG; Godbout JP
    J Neuroinflammation; 2010 Dec; 7():93. PubMed ID: 21167054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway.
    Perea JR; Ávila J; Bolós M
    Exp Neurol; 2018 Dec; 310():14-21. PubMed ID: 30138606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine.
    Zhuang ZY; Kawasaki Y; Tan PH; Wen YR; Huang J; Ji RR
    Brain Behav Immun; 2007 Jul; 21(5):642-51. PubMed ID: 17174525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphine reduces mouse microglial engulfment induced by lipopolysaccharide and interferon-γ via δ opioid receptor and p38 mitogen-activated protein kinase.
    Ryu JH; Do SH; Han SH; Zuo Z
    Neurol Res; 2018 Jul; 40(7):600-606. PubMed ID: 29583107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK.
    Lee KM; Jeon SM; Cho HJ
    Eur J Pain; 2010 Aug; 14(7):682.e1-12. PubMed ID: 19959384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) in morphine-induced tau protein hyperphosphorylation.
    Cao M; Liu F; Ji F; Liang J; Liu L; Wu Q; Wang T
    Behav Brain Res; 2013 Jan; 237():249-55. PubMed ID: 23026374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocytes in mouse models of tauopathies acquire early deficits and lose neurosupportive functions.
    Sidoryk-Wegrzynowicz M; Gerber YN; Ries M; Sastre M; Tolkovsky AM; Spillantini MG
    Acta Neuropathol Commun; 2017 Nov; 5(1):89. PubMed ID: 29187256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.