These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20921014)

  • 1. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback.
    Kukillaya R; Proctor J; Holmes P
    Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion.
    Proctor JL; Holmes P
    Biol Cybern; 2018 Aug; 112(4):387-401. PubMed ID: 29948143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP; Holmes PJ
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion.
    Proctor J; Holmes P
    Biol Cybern; 2010 Jun; 102(6):513-31. PubMed ID: 20358220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness.
    Kukillaya RP; Holmes P
    J Theor Biol; 2009 Nov; 261(2):210-26. PubMed ID: 19660474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chapter 10--a hierarchical perspective on rhythm generation for locomotor control.
    Yakovenko S
    Prog Brain Res; 2011; 188():151-66. PubMed ID: 21333808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of pattern generation of cockroach walking reconsidered.
    Zill SN
    J Neurobiol; 1986 Jul; 17(4):317-28. PubMed ID: 3746290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach.
    Fuchs E; Holmes P; David I; Ayali A
    J Exp Biol; 2012 Jun; 215(Pt 11):1884-91. PubMed ID: 22573767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A putative neuronal network controlling the activity of the leg motoneurons of the stick insect.
    Toth TI; Daun-Gruhn S
    Neuroreport; 2011 Dec; 22(18):943-6. PubMed ID: 22089647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J; Holmes P
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory.
    Schmitt J; Holmes P
    Biol Cybern; 2000 Dec; 83(6):501-15. PubMed ID: 11130583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A; Schmitt J
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory feedback in cockroach locomotion: current knowledge and open questions.
    Ayali A; Couzin-Fuchs E; David I; Gal O; Holmes P; Knebel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Sep; 201(9):841-50. PubMed ID: 25432627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proprioceptive neuromechanical theory of crawling.
    Paoletti P; Mahadevan L
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25030987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback.
    Bryden J; Cohen N
    Biol Cybern; 2008 Apr; 98(4):339-51. PubMed ID: 18350313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
    Revzen S; Burden SA; Moore TY; Mongeau JM; Full RJ
    Biol Cybern; 2013 Apr; 107(2):179-200. PubMed ID: 23371006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.