These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20921326)

  • 1. Control of a visual keyboard using an electrocorticographic brain-computer interface.
    Krusienski DJ; Shih JJ
    Neurorehabil Neural Repair; 2011 May; 25(4):323-31. PubMed ID: 20921326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signals from intraventricular depth electrodes can control a brain-computer interface.
    Shih JJ; Krusienski DJ
    J Neurosci Methods; 2012 Jan; 203(2):311-4. PubMed ID: 22044847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case study on the relation between electroencephalographic and electrocorticographic event-related potentials.
    Krusienski DJ; Shih JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6019-22. PubMed ID: 21097114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus.
    Krusienski DJ; Shih JJ
    J Neural Eng; 2011 Apr; 8(2):025006. PubMed ID: 21436521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward electrocorticographic control of a dexterous upper limb prosthesis: building brain-machine interfaces.
    Fifer MS; Acharya S; Benz HL; Mollazadeh M; Crone NE; Thakor NV
    IEEE Pulse; 2012 Jan; 3(1):38-42. PubMed ID: 22344950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces using electrocorticographic signals.
    Schalk G; Leuthardt EC
    IEEE Rev Biomed Eng; 2011; 4():140-54. PubMed ID: 22273796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interfacing based on cognitive control.
    Vansteensel MJ; Hermes D; Aarnoutse EJ; Bleichner MG; Schalk G; van Rijen PC; Leijten FS; Ramsey NF
    Ann Neurol; 2010 Jun; 67(6):809-16. PubMed ID: 20517943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the performances of different P300 based brain-computer interfaces by means of the efficiency metric.
    Quitadamo LR; Abbafati M; Cardarilli GC; Mattia D; Cincotti F; Babiloni F; Marciani MG; Bianchi L
    J Neurosci Methods; 2012 Jan; 203(2):361-8. PubMed ID: 22027493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.
    Sinai A; Bowers CW; Crainiceanu CM; Boatman D; Gordon B; Lesser RP; Lenz FA; Crone NE
    Brain; 2005 Jul; 128(Pt 7):1556-70. PubMed ID: 15817517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces.
    Scherer R; Zanos SP; Miller KJ; Rao RP; Ojemann JG
    Neurosurg Focus; 2009 Jul; 27(1):E12. PubMed ID: 19569887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spelling with non-invasive Brain-Computer Interfaces--current and future trends.
    Cecotti H
    J Physiol Paris; 2011; 105(1-3):106-14. PubMed ID: 21911058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 30+ years of P300 brain-computer interfaces.
    Allison BZ; Kübler A; Jin J
    Psychophysiology; 2020 Jul; 57(7):e13569. PubMed ID: 32301143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters.
    Blakely T; Miller KJ; Zanos SP; Rao RP; Ojemann JG
    Neurosurg Focus; 2009 Jul; 27(1):E13. PubMed ID: 19569888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Electrical Stimulation in Electrocorticographic Brain-Computer Interfaces: Enabling Technologies for Input to Cortex.
    Caldwell DJ; Ojemann JG; Rao RPN
    Front Neurosci; 2019; 13():804. PubMed ID: 31440127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces.
    Leuthardt EC; Freudenberg Z; Bundy D; Roland J
    Neurosurg Focus; 2009 Jul; 27(1):E10. PubMed ID: 19569885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.