These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20921374)

  • 1. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring.
    Shibata H; Heo YJ; Okitsu T; Matsunaga Y; Kawanishi T; Takeuchi S
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):17894-8. PubMed ID: 20921374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers.
    Heo YJ; Shibata H; Okitsu T; Kawanishi T; Takeuchi S
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13399-403. PubMed ID: 21808049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Janus Hydrogel Microbeads for Glucose Sensing with pH Calibration.
    Ando M; Tsuchiya M; Itai S; Murayama T; Kurashina Y; Heo YJ; Onoe H
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Injectable PEG-BSA-Coumarin-GOx Hydrogel for Fluorescence Turn-on Glucose Detection.
    Srinivasan G; Chen J; Parisi J; Brückner C; Yao X; Lei Y
    Appl Biochem Biotechnol; 2015 Nov; 177(5):1115-26. PubMed ID: 26288081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term
    Liu J; Fang X; Zhang Z; Liu Z; Liu J; Sun K; Yuan Z; Yu J; Chiu DT; Wu C
    Anal Chem; 2022 Feb; 94(4):2195-2203. PubMed ID: 35034435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor.
    Sawayama J; Takeuchi S
    Adv Healthc Mater; 2021 Feb; 10(3):e2001286. PubMed ID: 33191660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batteryless, Miniaturized Implantable Glucose Sensor Using a Fluorescent Hydrogel.
    Lee H; Lee J; Park H; Nam MS; Heo YJ; Kim S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator.
    Wang L; Li B; Xu F; Li Y; Xu Z; Wei D; Feng Y; Wang Y; Jia D; Zhou Y
    Biomaterials; 2017 Nov; 145():192-206. PubMed ID: 28869865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Glucose Monitoring Enabled by Fluorescent Nanodiamond Boronic Hydrogel.
    Zhang J; Zheng Y; Lee J; Hoover A; King SA; Chen L; Zhao J; Lin Q; Yu C; Zhu L; Wu X
    Adv Sci (Weinh); 2023 Mar; 10(7):e2203943. PubMed ID: 36646501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable Macroporous Ferrogel Microbeads with a High Structural Stability for Magnetically Actuated Drug Delivery.
    Shin BY; Cha BG; Jeong JH; Kim J
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31372-31380. PubMed ID: 28862424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-photobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring.
    Zhang X; Gao C; Lü S; Duan H; Jing N; Dong D; Shi C; Liu M
    J Mater Chem B; 2014 Sep; 2(33):5452-5460. PubMed ID: 32261765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic fluorescent microsphere glucose sensors:evaluation of response under dynamic conditions.
    Brown JQ; Srivastava R; Zhu H; McShane MJ
    Diabetes Technol Ther; 2006 Jun; 8(3):288-95. PubMed ID: 16800750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Glucose Sensor with In Vivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring.
    Sawayama J; Okitsu T; Nakamata A; Kawahara Y; Takeuchi S
    iScience; 2020 Jun; 23(6):101243. PubMed ID: 32629609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
    Zhao F; Wu D; Yao D; Guo R; Wang W; Dong A; Kong D; Zhang J
    Acta Biomater; 2017 Dec; 64():334-345. PubMed ID: 28974477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.
    Dong Y; Wang W; Veiseh O; Appel EA; Xue K; Webber MJ; Tang BC; Yang XW; Weir GC; Langer R; Anderson DG
    Langmuir; 2016 Aug; 32(34):8743-7. PubMed ID: 27455412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo.
    Tierney S; Falch BM; Hjelme DR; Stokke BT
    Anal Chem; 2009 May; 81(9):3630-6. PubMed ID: 19323502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous glucose sensing with a fluorescent thin-film hydrogel.
    Suri JT; Cordes DB; Cappuccio FE; Wessling RA; Singaram B
    Angew Chem Int Ed Engl; 2003; 42(47):5857-9. PubMed ID: 14673918
    [No Abstract]   [Full Text] [Related]  

  • 19. Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring.
    Ahn JM; Kim JH; Kim JH; Gu MB
    Lab Chip; 2010 Oct; 10(20):2695-701. PubMed ID: 20664847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional comparison of the single-layer agarose microbeads and the developed three-layer agarose microbeads as the bioartificial pancreas: an in vitro study.
    Xu B; Iwata H; Miyamoto M; Balamurugan AN; Murakami Y; Cui W; Imamura M; Inoue K
    Cell Transplant; 2001; 10(4-5):403-8. PubMed ID: 11549062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.