These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 20921386)
21. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Alvarez-Saavedra M; Sáez MA; Kang D; Zoghbi HY; Young JI Hum Mol Genet; 2007 Oct; 16(19):2315-25. PubMed ID: 17635839 [TBL] [Abstract][Full Text] [Related]
22. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Forlani G; Giarda E; Ala U; Di Cunto F; Salani M; Tupler R; Kilstrup-Nielsen C; Landsberger N Hum Mol Genet; 2010 Aug; 19(16):3114-23. PubMed ID: 20504995 [TBL] [Abstract][Full Text] [Related]
23. Cell cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes. Nectoux J; Fichou Y; Rosas-Vargas H; Cagnard N; Bahi-Buisson N; Nusbaum P; Letourneur F; Chelly J; Bienvenu T J Cell Mol Med; 2010 Jul; 14(7):1962-74. PubMed ID: 20569274 [TBL] [Abstract][Full Text] [Related]
24. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Deng V; Matagne V; Banine F; Frerking M; Ohliger P; Budden S; Pevsner J; Dissen GA; Sherman LS; Ojeda SR Hum Mol Genet; 2007 Mar; 16(6):640-50. PubMed ID: 17309881 [TBL] [Abstract][Full Text] [Related]
25. Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Kriaucionis S; Paterson A; Curtis J; Guy J; Macleod N; Bird A Mol Cell Biol; 2006 Jul; 26(13):5033-42. PubMed ID: 16782889 [TBL] [Abstract][Full Text] [Related]
26. Neural development of methyl-CpG-binding protein 2 null embryonic stem cells: a system for studying Rett syndrome. Okabe Y; Kusaga A; Takahashi T; Mitsumasu C; Murai Y; Tanaka E; Higashi H; Matsuishi T; Kosai K Brain Res; 2010 Nov; 1360():17-27. PubMed ID: 20816763 [TBL] [Abstract][Full Text] [Related]
27. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome. Kron M; Lang M; Adams IT; Sceniak M; Longo F; Katz DM Dis Model Mech; 2014 Sep; 7(9):1047-55. PubMed ID: 25147297 [TBL] [Abstract][Full Text] [Related]
28. A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing. Long SW; Ooi JY; Yau PM; Jones PL Biosci Rep; 2011 Oct; 31(5):333-43. PubMed ID: 21070191 [TBL] [Abstract][Full Text] [Related]
29. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice. Vermehren-Schmaedick A; Jenkins VK; Knopp SJ; Balkowiec A; Bissonnette JM Neuroscience; 2012 Mar; 206():1-6. PubMed ID: 22297041 [TBL] [Abstract][Full Text] [Related]
30. Deciphering Rett syndrome with mouse genetics, epigenomics, and human neurons. Tao J; Wu H; Sun YE Int Rev Neurobiol; 2009; 89():147-60. PubMed ID: 19900619 [TBL] [Abstract][Full Text] [Related]
31. The ups and downs of BDNF in Rett syndrome. Sun YE; Wu H Neuron; 2006 Feb; 49(3):321-3. PubMed ID: 16446133 [TBL] [Abstract][Full Text] [Related]
32. Rett syndrome: a complex disorder with simple roots. Lyst MJ; Bird A Nat Rev Genet; 2015 May; 16(5):261-75. PubMed ID: 25732612 [TBL] [Abstract][Full Text] [Related]
33. Altered somatosensory barrel cortex refinement in the developing brain of Mecp2-null mice. Moroto M; Nishimura A; Morimoto M; Isoda K; Morita T; Yoshida M; Morioka S; Tozawa T; Hasegawa T; Chiyonobu T; Yoshimoto K; Hosoi H Brain Res; 2013 Nov; 1537():319-26. PubMed ID: 24060648 [TBL] [Abstract][Full Text] [Related]
34. A single-cell atlas reveals the heterogeneity of meningeal immunity in a mouse model of Methyl CpG binding protein 2 deficiency. Li H; Hu M; Huang Z; Wang Y; Xu Y; Deng J; Zhu M; Feng W; Xu X Front Immunol; 2022; 13():1056447. PubMed ID: 36703978 [TBL] [Abstract][Full Text] [Related]
35. Regulation mechanism and research progress of MeCP2 in Rett syndrome. Yang W; Pan H Yi Chuan; 2014 Jul; 36(7):625-30. PubMed ID: 25076025 [TBL] [Abstract][Full Text] [Related]
36. Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome. Osenberg S; Karten A; Sun J; Li J; Charkowick S; Felice CA; Kritzer M; Nguyen MVC; Yu P; Ballas N Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5363-E5372. PubMed ID: 29769330 [TBL] [Abstract][Full Text] [Related]
37. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Ip JPK; Mellios N; Sur M Nat Rev Neurosci; 2018 Jun; 19(6):368-382. PubMed ID: 29740174 [TBL] [Abstract][Full Text] [Related]
38. BDNF deregulation in Rett syndrome. Li W; Pozzo-Miller L Neuropharmacology; 2014 Jan; 76 Pt C(0 0):737-46. PubMed ID: 23597512 [TBL] [Abstract][Full Text] [Related]
39. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Lonetti G; Angelucci A; Morando L; Boggio EM; Giustetto M; Pizzorusso T Biol Psychiatry; 2010 Apr; 67(7):657-65. PubMed ID: 20172507 [TBL] [Abstract][Full Text] [Related]
40. Evolving role of MeCP2 in Rett syndrome and autism. LaSalle JM; Yasui DH Epigenomics; 2009 Oct; 1(1):119-30. PubMed ID: 20473347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]