These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20922012)

  • 1. Image formation and tomogram reconstruction in optical coherence microscopy.
    Villiger M; Lasser T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2216-28. PubMed ID: 20922012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.
    Sheppard CJ; Kou SS; Depeursinge C
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):244-50. PubMed ID: 22472753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark-field optical coherence microscopy.
    Villiger M; Pache C; Lasser T
    Opt Lett; 2010 Oct; 35(20):3489-91. PubMed ID: 20967109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach.
    Kirillin M; Meglinski I; Kuzmin V; Sergeeva E; Myllylä R
    Opt Express; 2010 Oct; 18(21):21714-24. PubMed ID: 20941071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y; Maeno S; Aoshima K; Hasegawa H; Koseki H
    Appl Opt; 2010 Sep; 49(25):4756-62. PubMed ID: 20820218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of spectrometric parameters in spectral-domain optical coherence tomography.
    Xi P; Mei K; Bräuler T; Zhou C; Ren Q
    Appl Opt; 2011 Jan; 50(3):366-72. PubMed ID: 21263736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for suppressing the mirror image in Fourier-domain optical coherence tomography.
    Wu CT; Chi TT; Lee CK; Kiang YW; Yang CC; Chiang CP
    Opt Lett; 2011 Aug; 36(15):2889-91. PubMed ID: 21808348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artefact reduction for cell migration visualization using spectral domain optical coherence tomography.
    Hofer B; Povazay B; Hermann B; Rey SM; Kajić V; Tumlinson A; Powell K; Matz G; Drexler W
    J Biophotonics; 2011 May; 4(5):355-67. PubMed ID: 21520429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography.
    Gao W
    J Opt Soc Am A Opt Image Sci Vis; 2010 Dec; 27(12):2588-92. PubMed ID: 21119743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography.
    Seelamantula CS; Villiger ML; Leitgeb RA; Unser M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1762-71. PubMed ID: 18594634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent transfer function of Fourier transform spectral interferometric coherent anti-Stokes Raman scattering microscopy.
    Fukutake N
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1689-94. PubMed ID: 21811331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C; Yao G
    Opt Express; 2010 Mar; 18(7):7281-7. PubMed ID: 20389749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal signal processing of nonlinearity in swept-source and spectral-domain optical coherence tomography.
    Vergnole S; Lévesque D; Bizheva K; Lamouche G
    Appl Opt; 2012 Apr; 51(11):1701-8. PubMed ID: 22505160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AM-FM techniques in the analysis of optical coherence tomography signals.
    Pitris C; Kartakoullis A; Bousi E
    J Biophotonics; 2009 Jul; 2(6-7):364-9. PubMed ID: 19551909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier phase in Fourier-domain optical coherence tomography.
    Uttam S; Liu Y
    J Opt Soc Am A Opt Image Sci Vis; 2015 Dec; 32(12):2286-306. PubMed ID: 26831383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of a microrip using spectral-domain optical coherence tomography with three-dimensional image reconstruction.
    Koizumi H; Spaide RF
    Retina; 2007 Oct; 27(8):1152-3. PubMed ID: 18040263
    [No Abstract]   [Full Text] [Related]  

  • 19. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning.
    Wang RK
    Phys Med Biol; 2007 Oct; 52(19):5897-907. PubMed ID: 17881807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm.
    Hofer B; Povazay B; Unterhuber A; Wang L; Hermann B; Rey S; Matz G; Drexler W
    Opt Express; 2010 Mar; 18(5):4898-919. PubMed ID: 20389502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.