These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

28 related articles for article (PubMed ID: 20922376)

  • 1. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2).
    Wentzel A; Bruheim P; Øverby A; Jakobsen ØM; Sletta H; Omara WA; Hodgson DA; Ellingsen TE
    BMC Syst Biol; 2012 Jun; 6():59. PubMed ID: 22676814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies modulation of bacterial development through iron competition and siderophore piracy.
    Traxler MF; Seyedsayamdost MR; Clardy J; Kolter R
    Mol Microbiol; 2012 Nov; 86(3):628-44. PubMed ID: 22931126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material.
    Langlois P; Bourassa S; Poirier GG; Beaulieu C
    Appl Environ Microbiol; 2003 Apr; 69(4):1884-9. PubMed ID: 12676660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET-based system for probing protein-protein interactions between σR and RsrA from Streptomyces coelicolor in response to the redox environment.
    Wei ZH; Chen H; Zhang C; Ye BC
    PLoS One; 2014; 9(3):e92330. PubMed ID: 24651617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics.
    Gubbens J; Janus MM; Florea BI; Overkleeft HS; van Wezel GP
    Mol Microbiol; 2012 Dec; 86(6):1490-507. PubMed ID: 23078239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of morphological development is congruent with the species phylogeny in the genus
    Wang M; Li CJ; Zhang Z; Li PP; Yang LL; Zhi XY
    Front Microbiol; 2023; 14():1102250. PubMed ID: 37065118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor.
    Getsin I; Nalbandian GH; Yee DC; Vastermark A; Paparoditis PC; Reddy VS; Saier MH
    BMC Microbiol; 2013 Dec; 13():279. PubMed ID: 24304716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis.
    Le Maréchal P; Decottignies P; Marchand CH; Degrouard J; Jaillard D; Dulermo T; Froissard M; Smirnov A; Chapuis V; Virolle MJ
    Appl Environ Microbiol; 2013 Oct; 79(19):5907-17. PubMed ID: 23872561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals and regulators that govern Streptomyces development.
    McCormick JR; Flärdh K
    FEMS Microbiol Rev; 2012 Jan; 36(1):206-31. PubMed ID: 22092088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius.
    Guzmán S; Carmona A; Escalante L; Imriskova I; López R; Rodríguez-Sanoja R; Ruiz B; Servín-González L; Sánchez S; Langley E
    Microbiology (Reading); 2005 May; 151(Pt 5):1717-1723. PubMed ID: 15870479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor.
    Sigle S; Ladwig N; Wohlleben W; Muth G
    Int J Med Microbiol; 2015 Feb; 305(2):183-9. PubMed ID: 25595023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S
    World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of SCO2127 with BldKB and its possible connection to carbon catabolite regulation of morphological differentiation in Streptomyces coelicolor.
    Chávez A; Forero A; Sánchez M; Rodríguez-Sanoja R; Mendoza-Hernández G; Servín-Gonzalez L; Sánchez B; García-Huante Y; Rocha D; Langley E; Ruiz B; Sánchez S
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):799-806. PubMed ID: 20922376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of the sco2127 gene from Streptomyces coelicolor M145.
    Chávez A; García-Huante Y; Ruiz B; Langley E; Rodríguez-Sanoja R; Sanchez S
    J Ind Microbiol Biotechnol; 2009 May; 36(5):649-54. PubMed ID: 19212786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible involvement of the sco2127 gene product in glucose repression of actinorhodin production in Streptomyces coelicolor.
    Forero A; Sánchez M; Chávez A; Ruiz B; Rodríguez-Sanoja R; Servín-González L; Sánchez S
    Can J Microbiol; 2012 Oct; 58(10):1195-201. PubMed ID: 23051184
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.