These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 20922757)
1. Optimization of cyclical electrical field flow fractionation. Srinivas M; Sant HJ; Gale BK Electrophoresis; 2010 Oct; 31(20):3372-9. PubMed ID: 20922757 [TBL] [Abstract][Full Text] [Related]
2. A novel method for effective field measurements in electrical field-flow fractionation. Merugu S; Sant HJ; Gale BK Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424 [TBL] [Abstract][Full Text] [Related]
3. Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation. Kantak AS; Srinivas M; Gale BK Anal Chem; 2006 Apr; 78(8):2557-64. PubMed ID: 16615764 [TBL] [Abstract][Full Text] [Related]
4. Cyclical electrical field flow fractionation. Gale BK; Srinivas M Electrophoresis; 2005 May; 26(9):1623-32. PubMed ID: 15800965 [TBL] [Abstract][Full Text] [Related]
5. Biased cyclical electrical field-flow fractionation for separation of submicron particles. Ornthai M; Siripinyanond A; Gale BK Anal Bioanal Chem; 2016 Jan; 408(3):855-63. PubMed ID: 26612733 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a microscale cyclical electrical field flow fractionation system. Kantak A; Srinivas M; Gale B Lab Chip; 2006 May; 6(5):645-54. PubMed ID: 16652180 [TBL] [Abstract][Full Text] [Related]
7. Improved theory of cyclical electrical field flow fractionation. Kantak A; Merugu S; Gale BK Electrophoresis; 2006 Jul; 27(14):2833-43. PubMed ID: 16850427 [TBL] [Abstract][Full Text] [Related]
8. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles. Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100 [TBL] [Abstract][Full Text] [Related]
9. Characterization of polymerized liposomes using a combination of dc and cyclical electrical field-flow fractionation. Sant HJ; Chakravarty S; Merugu S; Ferguson CG; Gale BK Anal Chem; 2012 Oct; 84(19):8323-9. PubMed ID: 22928609 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticle characterization by cyclical electrical field-flow fractionation. Gigault J; Gale BK; Le Hecho I; Lespes G Anal Chem; 2011 Sep; 83(17):6565-72. PubMed ID: 21774534 [TBL] [Abstract][Full Text] [Related]
11. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles. Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262 [TBL] [Abstract][Full Text] [Related]
12. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation. Shiri F; Petersen KE; Romanov V; Zou Q; Gale BK Anal Bioanal Chem; 2020 Mar; 412(7):1563-1572. PubMed ID: 31938845 [TBL] [Abstract][Full Text] [Related]
13. Electrical field-flow fractionation for metal nanoparticle characterization. Somchue W; Siripinyanond A; Gale BK Anal Chem; 2012 Jun; 84(11):4993-8. PubMed ID: 22551406 [TBL] [Abstract][Full Text] [Related]
14. A one-dimensional transient model of electrical field flow fractionation. Biernacki JJ; Vyas N Electrophoresis; 2005 Jan; 26(1):18-27. PubMed ID: 15624184 [TBL] [Abstract][Full Text] [Related]
15. Geometric scaling effects on instrumental plate height in field flow fractionation. Sant HJ; Gale BK J Chromatogr A; 2006 Feb; 1104(1-2):282-90. PubMed ID: 16368105 [TBL] [Abstract][Full Text] [Related]
16. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency. Ahn JY; Kim KH; Lee JY; Williams PS; Moon MH J Chromatogr A; 2010 Jun; 1217(24):3876-80. PubMed ID: 20439106 [TBL] [Abstract][Full Text] [Related]
17. Electric circuit model for electrical field flow fractionation. Biernacki JJ; Mellacheruvu PM; Mahajan SM Anal Chem; 2006 Jul; 78(14):4998-5005. PubMed ID: 16841923 [TBL] [Abstract][Full Text] [Related]
18. On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles. Janca J; Stejskal J J Chromatogr A; 2009 Dec; 1216(52):9071-80. PubMed ID: 19552912 [TBL] [Abstract][Full Text] [Related]
19. Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation. Regazzetti A; Hoyos M; Martin M Anal Chem; 2004 Oct; 76(19):5787-98. PubMed ID: 15456299 [TBL] [Abstract][Full Text] [Related]
20. Optimizing band width and resolution in micro-free flow electrophoresis. Fonslow BR; Bowser MT Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]