These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20922987)

  • 21. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus.
    Jonas U; Hammer E; Haupt ET; Schauer F
    Arch Microbiol; 2000 Dec; 174(6):393-8. PubMed ID: 11195094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial transformations of 6- and 7-methoxyflavones in Aspergillus niger and Penicillium chermesinum cultures.
    Kostrzewa-Susłow E; Dmochowska-Gładysz J; Janeczko T; Sroda K; Michalak K; Palko A
    Z Naturforsch C J Biosci; 2012; 67(7-8):411-7. PubMed ID: 23016281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quenching of triplet benzophenone by benzene and diphenyl ether: a DFT study.
    Smith MJ; Bucher G
    J Phys Chem A; 2010 Oct; 114(39):10712-6. PubMed ID: 20839816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytotoxic biotransformed products from triptonide by Aspergillus niger.
    Ning L; Qu G; Ye M; Guo H; Bi K; Guo D
    Planta Med; 2003 Sep; 69(9):804-8. PubMed ID: 14598204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752.
    Schauer F; Henning K; Pscheidl H; Wittich RM; Fortnagel P; Wilkes H; Sinnwell V; Francke W
    Biodegradation; 1995 Jun; 6(2):173-80. PubMed ID: 7772943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger.
    Luo J; Mobley R; Woodfine S; Drijfhout F; Horrocks P; Ren XD; Li WW
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2433-2444. PubMed ID: 35355096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stereo- and regioselective hydroxylation of grindelic acid derivatives by Aspergillus niger.
    Orden AA; Cifuente DA; Borkowski EJ; Tonn CE; Sanz MK
    Nat Prod Res; 2005 Sep; 19(6):625-31. PubMed ID: 16010831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial models of mammalian metabolism: production of novel alpha-diketone metabolites of warfarin and phenprocoumon using Aspergillus niger.
    Rizzo JD; Davis PJ
    Xenobiotica; 1988 Dec; 18(12):1425-37. PubMed ID: 3245234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytotoxic biotransformed products from cinobufagin by Mucor spinosus and Aspergillus Niger.
    He X; Tang J; Qiao A; Wang G; Jiang M; Liu RH; Yao X
    Steroids; 2006 May; 71(5):392-402. PubMed ID: 16469341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotransformation of glabratephrin, a rare type of isoprenylated flavonoids, by Aspergillus niger.
    Mohamed AE; Khalafallah AK; Yousof AH
    Z Naturforsch C J Biosci; 2008; 63(7-8):561-4. PubMed ID: 18811002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant activity of biotransformed sex hormones facilitated by Bacillus stearothermophilus.
    Afzal M; Al-Awadi S; Oommen S
    Methods Mol Biol; 2008; 477():293-300. PubMed ID: 19082955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.
    Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G
    Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures.
    Schmeda-Hirschmann G; Aranda C; Kurina M; Rodríguez JA; Theoduloz C
    Molecules; 2007 May; 12(5):1092-100. PubMed ID: 17873843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HYDROXYLATION OF PHENOXYACETIC ACID AND ANISOLE BY ASPERGILLUS NIGER (VAN TIEGH).
    BOCKS SM; SMITH JR; NORMAN RO
    Nature; 1964 Jan; 201():398. PubMed ID: 14110006
    [No Abstract]   [Full Text] [Related]  

  • 35. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.
    Ramos Ade S; Ribeiro JB; Teixeira BG; Ferreira JL; Silva JR; Ferreira Ado A; de Souza RO; Amaral AC
    Braz J Microbiol; 2015 Mar; 46(1):261-4. PubMed ID: 26221115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxylation of benzoate and its chlorinated derivatives in Aspergillus niger.
    Sahasrabudhe SR; Modi VV
    Biochem Int; 1985 Apr; 10(4):525-9. PubMed ID: 4026866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger.
    Parshikov IA; Sutherland JB
    Appl Biochem Biotechnol; 2015 Jun; 176(3):903-23. PubMed ID: 25951777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel butenoate derivative from Aspergillus niger.
    Yuan W; Zhu H; Cheng K; Huang Z; Qin Y; Yang J; Zhu P
    Nat Prod Res; 2006 May; 20(6):573-7. PubMed ID: 16835090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbiological transformation of two labdane diterpenes, the main constituents of Madia species, by two fungi.
    Haridy MS; Ahmed AA; Doe M
    Phytochemistry; 2006 Jul; 67(14):1455-9. PubMed ID: 16839574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel enantioselective epoxide hydrolase for (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol.
    Wu S; Shen J; Zhou X; Chen J
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1281-7. PubMed ID: 17710393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.