BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20923232)

  • 1. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.
    Alexander KD; Skinner K; Zhang S; Wei H; Lopez R
    Nano Lett; 2010 Nov; 10(11):4488-93. PubMed ID: 20923232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers.
    Huang F; Baumberg JJ
    Nano Lett; 2010 May; 10(5):1787-92. PubMed ID: 20408552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of metal half-shells using colloidal particle monolayer and their application in surface-enhanced Raman scattering.
    Taniguchi Y; Endo H; Kawai T
    J Nanosci Nanotechnol; 2012 Jan; 12(1):451-7. PubMed ID: 22524001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle superlattices as functional solids for concomitant conductivity and SERS tuning.
    Shibu ES; Cyriac J; Pradeep T; Chakrabarti J
    Nanoscale; 2011 Mar; 3(3):1066-72. PubMed ID: 21161103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonance changes of gold nanoparticle arrays upon modification.
    Ha DH; Kim S; Yun YJ; Park HJ; Yun WS; Song JH
    Nanotechnology; 2009 Feb; 20(8):085204. PubMed ID: 19417444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs.
    Huang W; Qian W; Jain PK; El-Sayed MA
    Nano Lett; 2007 Oct; 7(10):3227-34. PubMed ID: 17760479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering.
    Li W; Camargo PH; Lu X; Xia Y
    Nano Lett; 2009 Jan; 9(1):485-90. PubMed ID: 19143509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods.
    Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ
    ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tug-of-war in nanoparticles: competitive growth of Au on Au-Fe3O4 nanoparticles.
    Wang C; Wei Y; Jiang H; Sun S
    Nano Lett; 2009 Dec; 9(12):4544-7. PubMed ID: 19842692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue".
    Taylor RW; Lee TC; Scherman OA; Esteban R; Aizpurua J; Huang FM; Baumberg JJ; Mahajan S
    ACS Nano; 2011 May; 5(5):3878-87. PubMed ID: 21488693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional arrangement of gold nanoparticles with tunable interparticle distance.
    Jiang L; Wang W; Fuchs H; Chi L
    Small; 2009 Dec; 5(24):2819-22. PubMed ID: 19842113
    [No Abstract]   [Full Text] [Related]  

  • 14. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and versatile route to high yield face-to-face dimeric assembly of Ag nanocubes and their surface plasmonic properties.
    Uchida S; Taguchi A; Mitani M; ichimura T; Kawata S; Yamamura K; Zettsu N
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2890-6. PubMed ID: 21776649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and optical properties of silica-supported Ag-Au nanoparticles.
    Barreca D; Gasparotto A; Maragno C; Tondello E; Gialanella S
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2480-6. PubMed ID: 17663268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes.
    Rainò G; Stöferle T; Park C; Kim HC; Topuria T; Rice PM; Chin IJ; Miller RD; Mahrt RF
    ACS Nano; 2011 May; 5(5):3536-41. PubMed ID: 21534536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized fabrication of surfactant-stabilized anisotropic metal nanoparticles to amino-functionalized surfaces: application to surface-enhanced Raman spectroscopy.
    Wang C; Chen Y; Ma Z; Wang T; Su Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5887-95. PubMed ID: 19198322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite au nanostructures for fluorescence studies in visible light.
    Kravets VG; Zoriniants G; Burrows CP; Schedin F; Geim AK; Barnes WL; Grigorenko AN
    Nano Lett; 2010 Mar; 10(3):874-9. PubMed ID: 20143865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.