These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20923319)

  • 1. Evaluation of sit-to-stand motion using a pressure distribution measurement system--effect of differences in seat hardness on sit-to-stand motion.
    Sato S; Mizuma M; Kawate N; Kasai F; Watanabe H
    Disabil Rehabil Assist Technol; 2011; 6(4):290-8. PubMed ID: 20923319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of sagittal spine and lower limb movement in healthy older adults during sit-to-stand from two seat heights.
    Kuo YL; Tully EA; Galea MP
    Spine (Phila Pa 1976); 2010 Jan; 35(1):E1-7. PubMed ID: 20042941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of the sit-to-stand movement: a review.
    Janssen WG; Bussmann HB; Stam HJ
    Phys Ther; 2002 Sep; 82(9):866-79. PubMed ID: 12201801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching of movement direction is central to parkinsonian bradykinesia in sit-to-stand.
    Mak MK; Hui-Chan CW
    Mov Disord; 2002 Nov; 17(6):1188-95. PubMed ID: 12465056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional kinetics of the lumbar spine and hips in low back pain patients during sit-to-stand and stand-to-sit.
    Shum GL; Crosbie J; Lee RY
    Spine (Phila Pa 1976); 2007 Apr; 32(7):E211-9. PubMed ID: 17414896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic balance control during sit-to-stand movement: an examination with the center of mass acceleration.
    Fujimoto M; Chou LS
    J Biomech; 2012 Feb; 45(3):543-8. PubMed ID: 22169151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates.
    Zijlstra A; Mancini M; Lindemann U; Chiari L; Zijlstra W
    J Neuroeng Rehabil; 2012 Oct; 9():75. PubMed ID: 23039219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A body-fixed-sensor-based analysis of power during sit-to-stand movements.
    Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H
    Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data.
    Mazzà C; Zok M; Della Croce U
    Gait Posture; 2005 Jun; 21(4):425-31. PubMed ID: 15886132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handrail position and shape that best facilitate sit-to-stand movement.
    Kinoshita S
    J Back Musculoskelet Rehabil; 2012; 25(1):33-45. PubMed ID: 22398265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanic modeling of sit-to-stand to upright posture for mobility assessment of persons with chronic stroke.
    Mazzà C; Stanhope SJ; Taviani A; Cappozzo A
    Arch Phys Med Rehabil; 2006 May; 87(5):635-41. PubMed ID: 16635625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased trunk angular displacement during sitting down: an early feature of aging.
    Dubost V; Beauchet O; Manckoundia P; Herrmann F; Mourey F
    Phys Ther; 2005 May; 85(5):404-12. PubMed ID: 15842189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults.
    Van Lummel RC; Ainsworth E; Lindemann U; Zijlstra W; Chiari L; Van Campen P; Hausdorff JM
    Gait Posture; 2013 May; 38(1):153-6. PubMed ID: 23195854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugate momentum estimate using non-linear dynamic model of the sit-to-stand correlates well with accelerometric surface data.
    Aissaoui R; Ganea R; Aminian K
    J Biomech; 2011 Apr; 44(6):1073-7. PubMed ID: 21377682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis.
    Roy G; Nadeau S; Gravel D; Malouin F; McFadyen BJ; Piotte F
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):585-93. PubMed ID: 16540217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults.
    O'Meara DM; Smith RM
    Hum Mov Sci; 2006 Apr; 25(2):257-74. PubMed ID: 16458382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly.
    Najafi B; Aminian K; Loew F; Blanc Y; Robert PA
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):843-51. PubMed ID: 12148823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Patternizing" standards of sit-to-stand movements with support in cerebral palsy.
    Yonetsu R; Nitta O; Surya J
    NeuroRehabilitation; 2009; 25(4):289-96. PubMed ID: 20037222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sagittal spine and lower limb movement during sit-to-stand in healthy young subjects.
    Tully EA; Fotoohabadi MR; Galea MP
    Gait Posture; 2005 Dec; 22(4):338-45. PubMed ID: 16274916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints.
    Mathiyakom W; McNitt-Gray JL; Requejo P; Costa K
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):105-11. PubMed ID: 15567544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.