BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20923666)

  • 1. Large domain fluctuations on 50-ns timescale enable catalytic activity in phosphoglycerate kinase.
    Inoue R; Biehl R; Rosenkranz T; Fitter J; Monkenbusch M; Radulescu A; Farago B; Richter D
    Biophys J; 2010 Oct; 99(7):2309-17. PubMed ID: 20923666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional domain motions in proteins on the ~1-100 ns timescale: comparison of neutron spin-echo spectroscopy of phosphoglycerate kinase with molecular-dynamics simulation.
    Smolin N; Biehl R; Kneller GR; Richter D; Smith JC
    Biophys J; 2012 Mar; 102(5):1108-17. PubMed ID: 22404933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow internal protein dynamics in solution.
    Biehl R; Richter D
    J Phys Condens Matter; 2014 Dec; 26(50):503103. PubMed ID: 25419898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of PEGylation on Domain Dynamics of Phosphoglycerate Kinase: PEG Acts Like Entropic Spring for the Protein.
    Ciepluch K; Radulescu A; Hoffmann I; Raba A; Allgaier J; Richter D; Biehl R
    Bioconjug Chem; 2018 Jun; 29(6):1950-1960. PubMed ID: 29847099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of interdomain interactions on the intradomain motions in yeast phosphoglycerate kinase: a molecular dynamics study.
    Balog E; Laberge M; Fidy J
    Biophys J; 2007 Mar; 92(5):1709-16. PubMed ID: 17158564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate binding modifies the hinge bending characteristics of human 3-phosphoglycerate kinase: a molecular dynamics study.
    Palmai Z; Chaloin L; Lionne C; Fidy J; Perahia D; Balog E
    Proteins; 2009 Nov; 77(2):319-29. PubMed ID: 19422062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics in phosphoglycerate kinase, an open and shut case?
    Bowler MW
    FEBS Lett; 2013 Jun; 587(13):1878-83. PubMed ID: 23684636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer.
    Haran G; Haas E; Szpikowska BK; Mas MT
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11764-8. PubMed ID: 1465395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-induced double sided H-bond network as a means of domain closure in 3-phosphoglycerate kinase.
    Varga A; Flachner B; Konarev P; Gráczer E; Szabó J; Svergun D; Závodszky P; Vas M
    FEBS Lett; 2006 May; 580(11):2698-706. PubMed ID: 16647059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability.
    Auerbach G; Huber R; Grättinger M; Zaiss K; Schurig H; Jaenicke R; Jacob U
    Structure; 1997 Nov; 5(11):1475-83. PubMed ID: 9384563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the mechanism of domain movements and their role in enzyme function: example of 3-phosphoglycerate kinase.
    Vas M; Varga A; Gráczer E
    Curr Protein Pept Sci; 2010 Mar; 11(2):118-47. PubMed ID: 20088776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational state distributions and catalytically relevant dynamics of a hinge-bending enzyme studied by single-molecule FRET and a coarse-grained simulation.
    Gabba M; Poblete S; Rosenkranz T; Katranidis A; Kempe D; Züchner T; Winkler RG; Gompper G; Fitter J
    Biophys J; 2014 Oct; 107(8):1913-1923. PubMed ID: 25418172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility and folding of phosphoglycerate kinase.
    Yon JM; Desmadril M; Betton JM; Minard P; Ballery N; Missiakas D; Gaillard-Miran S; Perahia D; Mouawad L
    Biochimie; 1990; 72(6-7):417-29. PubMed ID: 2124145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Chaffotte A; Minard P; Yon JM
    Protein Sci; 1992 Nov; 1(11):1485-93. PubMed ID: 1303767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-controlled protein dynamics observed with neutron spin echo measurements.
    Wang SC; Mirarefi P; Faraone A; Lee CT
    Biochemistry; 2011 Sep; 50(38):8150-62. PubMed ID: 21809812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure.
    Szilágyi AN; Ghosh M; Garman E; Vas M
    J Mol Biol; 2001 Feb; 306(3):499-511. PubMed ID: 11178909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the R65Q mutant of yeast 3-phosphoglycerate kinase complexed with Mg-AMP-PNP and 3-phospho-D-glycerate.
    McPhillips TM; Hsu BT; Sherman MA; Mas MT; Rees DC
    Biochemistry; 1996 Apr; 35(13):4118-27. PubMed ID: 8672447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ATP analogs with yeast 3-phosphoglycerate kinase. Affinity labeling of the hinge region.
    Pineda T; Kwon OS; Serpersu EH; Churchich JE
    Eur J Biochem; 1993 Mar; 212(3):719-26. PubMed ID: 8462545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the C-terminal helix in the folding and stability of yeast phosphoglycerate kinase.
    Ritco-Vonsovici M; Mouratou B; Minard P; Desmadril M; Yon JM; Andrieux M; Leroy E; Guittet E
    Biochemistry; 1995 Jan; 34(3):833-41. PubMed ID: 7827042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal nanosecond dynamics in the intrinsically disordered myelin basic protein.
    Stadler AM; Stingaciu L; Radulescu A; Holderer O; Monkenbusch M; Biehl R; Richter D
    J Am Chem Soc; 2014 May; 136(19):6987-94. PubMed ID: 24758710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.