These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20923741)

  • 1. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.
    Nataraj R; Audu ML; Kirsch RF; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):646-57. PubMed ID: 20923741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Center of mass acceleration feedback control for standing by functional neuromuscular stimulation: a simulation study.
    Nataraj R; Audu ML; Kirsch RF; Triolo RJ
    J Rehabil Res Dev; 2012; 49(2):279-96. PubMed ID: 22773529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.
    Nataraj R; Audu ML; Triolo RJ
    J Neuroeng Rehabil; 2012 May; 9():25. PubMed ID: 22559852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury.
    Audu ML; Odle BM; Triolo RJ
    Med Biol Eng Comput; 2018 Feb; 56(2):317-330. PubMed ID: 28736791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Center of mass acceleration feedback control of functional neuromuscular stimulation for standing in presence of internal postural perturbations.
    Nataraj R; Audu ML; Triolo RJ
    J Rehabil Res Dev; 2012; 49(6):889-911. PubMed ID: 23299260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury.
    Nataraj R; Audu ML; Triolo RJ
    Med Biol Eng Comput; 2016 Jan; 54(1):163-76. PubMed ID: 26324246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle, knee, and hip moments during standing with and without joint contractures: simulation study for functional electrical stimulation.
    Kagaya H; Sharma M; Kobetic R; Marsolais EB
    Am J Phys Med Rehabil; 1998; 77(1):49-54; quiz 65-6. PubMed ID: 9482379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance.
    Vette AH; Masani K; Nakazawa K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):86-95. PubMed ID: 20071280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Center of mass acceleration feedback control of standing balance by functional neuromuscular stimulation against external postural perturbations.
    Nataraj R; Audu ML; Triolo RJ
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):10-9. PubMed ID: 22987499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S; Massaquoi SG
    Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posture shifting after spinal cord injury using functional neuromuscular stimulation--a computer simulation study.
    Audu ML; Nataraj R; Gartman SJ; Triolo RJ
    J Biomech; 2011 Jun; 44(9):1639-45. PubMed ID: 21536290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuroprosthesis for control of seated balance after spinal cord injury.
    Audu ML; Lombardo LM; Schnellenberger JR; Foglyano KM; Miller ME; Triolo RJ
    J Neuroeng Rehabil; 2015 Jan; 12():8. PubMed ID: 25608888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of bipedal stance: the contribution of cocontraction and spindle feedback.
    van Soest AJ; Haenen WP; Rozendaal LA
    Biol Cybern; 2003 Apr; 88(4):293-301. PubMed ID: 12690488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Control of the Human Trunk Posture Using Functional Neuromuscular Stimulation: A Simulation Study.
    Bao X; Audu ML; Friederich AR; Triolo RJ
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35199154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating total maximum isometric force output of trunk and hip muscles after spinal cord injury.
    Bheemreddy A; Friederich A; Lombardo L; Triolo RJ; Audu ML
    Med Biol Eng Comput; 2020 Apr; 58(4):739-751. PubMed ID: 31974873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.