BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20924998)

  • 41. Giant cells: contradiction to two-hit model of tuber formation?
    Jozwiak J; Jozwiak S
    Cell Mol Neurobiol; 2007 Mar; 27(2):251-61. PubMed ID: 16897363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions.
    Magri L; Cambiaghi M; Cominelli M; Alfaro-Cervello C; Cursi M; Pala M; Bulfone A; Garcìa-Verdugo JM; Leocani L; Minicucci F; Poliani PL; Galli R
    Cell Stem Cell; 2011 Nov; 9(5):447-62. PubMed ID: 22056141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TFEB activation restores migration ability to Tsc1-deficient adult neural stem/progenitor cells.
    Magini A; Polchi A; Di Meo D; Mariucci G; Sagini K; De Marco F; Cassano T; Giovagnoli S; Dolcetta D; Emiliani C
    Hum Mol Genet; 2017 Sep; 26(17):3303-3312. PubMed ID: 28637240
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuberous sclerosis complex: molecular pathogenesis and animal models.
    Piedimonte LR; Wailes IK; Weiner HL
    Neurosurg Focus; 2006 Jan; 20(1):E4. PubMed ID: 16459994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse.
    Way SW; McKenna J; Mietzsch U; Reith RM; Wu HC; Gambello MJ
    Hum Mol Genet; 2009 Apr; 18(7):1252-65. PubMed ID: 19150975
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular pathogenesis of tuber formation in tuberous sclerosis complex.
    Crino PB
    J Child Neurol; 2004 Sep; 19(9):716-25. PubMed ID: 15563019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Diagnosis of tuberous sclerosis complex].
    Belousova ED; Dorofeeva MY; Pivovarova AM; Katusheva OV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2015; 115(10):89-95. PubMed ID: 26525630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genotype/Phenotype Correlations in Tuberous Sclerosis Complex.
    Curatolo P; Moavero R; Roberto D; Graziola F
    Semin Pediatr Neurol; 2015 Dec; 22(4):259-73. PubMed ID: 26706013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brain abnormalities in tuberous sclerosis complex.
    DiMario FJ
    J Child Neurol; 2004 Sep; 19(9):650-7. PubMed ID: 15563010
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent
    Bongaarts A; Giannikou K; Reinten RJ; Anink JJ; Mills JD; Jansen FE; Spliet GMW; den Dunnen WFA; Coras R; Blümcke I; Paulus W; Scholl T; Feucht M; Kotulska K; Jozwiak S; Buccoliero AM; Caporalini C; Giordano F; Genitori L; Söylemezoğlu F; Pimentel J; Nellist M; Schouten-van Meeteren AYN; Nag A; Mühlebner A; Kwiatkowski DJ; Aronica E
    Oncotarget; 2017 Nov; 8(56):95516-95529. PubMed ID: 29221145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuberous sclerosis-related gene expression in normal and dysplastic brain.
    Vinters HV; Kerfoot C; Catania M; Emelin JK; Roper SN; DeClue JE
    Epilepsy Res; 1998 Sep; 32(1-2):12-23. PubMed ID: 9761305
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapamycin as a therapy of choice after renal transplantation in a patient with tuberous sclerosis complex.
    Tarasewicz A; Debska-Slizień A; Konopa J; Zdrojewski Z; Rutkowski B
    Transplant Proc; 2009 Nov; 41(9):3677-82. PubMed ID: 19917366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation.
    Prabowo AS; Anink JJ; Lammens M; Nellist M; van den Ouweland AM; Adle-Biassette H; Sarnat HB; Flores-Sarnat L; Crino PB; Aronica E
    Brain Pathol; 2013 Jan; 23(1):45-59. PubMed ID: 22805177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex.
    Ess KC; Kamp CA; Tu BP; Gutmann DH
    Neurology; 2005 Apr; 64(8):1446-9. PubMed ID: 15851742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transgenic expression of dominant negative tuberin through a strong constitutive promoter results in a tissue-specific tuberous sclerosis phenotype in the skin and brain.
    Govindarajan B; Brat DJ; Csete M; Martin WD; Murad E; Litani K; Cohen C; Cerimele F; Nunnelley M; Lefkove B; Yamamoto T; Lee C; Arbiser JL
    J Biol Chem; 2005 Feb; 280(7):5870-4. PubMed ID: 15576369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A genetic model to dissect the role of Tsc-mTORC1 in neuronal cultures.
    Nie D; Sahin M
    Methods Mol Biol; 2012; 821():393-405. PubMed ID: 22125080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin.
    Kim SH; Speirs CK; Solnica-Krezel L; Ess KC
    Dis Model Mech; 2011 Mar; 4(2):255-67. PubMed ID: 20959633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental brain abnormalities in tuberous sclerosis complex: a comparative tissue analysis of cortical tubers and perituberal cortex.
    Ruppe V; Dilsiz P; Reiss CS; Carlson C; Devinsky O; Zagzag D; Weiner HL; Talos DM
    Epilepsia; 2014 Apr; 55(4):539-50. PubMed ID: 24512506
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer.
    Ma L; Teruya-Feldstein J; Bonner P; Bernardi R; Franz DN; Witte D; Cordon-Cardo C; Pandolfi PP
    Cancer Res; 2007 Aug; 67(15):7106-12. PubMed ID: 17671177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autopsy case of right ventricular rhabdomyoma in tuberous sclerosis complex.
    Kondo T; Niida Y; Mizuguchi M; Nagasaki Y; Ueno Y; Nishimura A
    Leg Med (Tokyo); 2019 Feb; 36():37-40. PubMed ID: 30336374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.