BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20925054)

  • 21. Determination of the operational pH value of a buffering membrane by an isoelectric trapping separation of a carrier ampholyte mixture.
    North RY; Vigh G
    Electrophoresis; 2008 Mar; 29(5):1077-81. PubMed ID: 18271066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peak identification in capillary isoelectric focusing using the concept of relative peak position as determined by two isoelectric point markers.
    Wu J; Huang T
    Electrophoresis; 2006 Sep; 27(18):3584-90. PubMed ID: 16927345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmaceutical applications of isoelectric focusing on microchip with imaged UV detection.
    Vlcková M; Kalman F; Schwarz MA
    J Chromatogr A; 2008 Feb; 1181(1-2):145-52. PubMed ID: 18199438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and theoretical dynamics of isoelectric focusing: IV. Cathodic, anodic and symmetrical drifts of the pH gradient.
    Mosher RA; Thormann W
    Electrophoresis; 1990 Sep; 11(9):717-23. PubMed ID: 2257843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient algorithm for simulation of isoelectric focusing.
    Yoo K; Shim J; Liu J; Dutta P
    Electrophoresis; 2014 Mar; 35(5):638-45. PubMed ID: 24165899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ampholyte dissociation constants on protein separation in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3719-28. PubMed ID: 19051929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeatedly usable immobilized pH gradient in a monolithic capillary column.
    Yang C; Zhu G; Zhang L; Zhang W; Zhang Y
    Electrophoresis; 2004 Jun; 25(12):1729-34. PubMed ID: 15213970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and effective focusing in a carrier ampholyte solution isoelectric focusing system: a proteome prefractionation tool.
    Tran JC; Doucette AA
    J Proteome Res; 2008 Apr; 7(4):1761-6. PubMed ID: 18284188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: Elucidation of the contributing electrokinetic processes by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2021 Apr; 42(7-8):814-833. PubMed ID: 33184847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution computer simulation of electrophoretic mobilization in isoelectric focusing.
    Thormann W; Mosher RA
    Electrophoresis; 2008 Apr; 29(8):1676-86. PubMed ID: 18383018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-varying migration process of moving neutralization boundary on the immobilized pH gradient strip in the weak-base rehydration buffer.
    Liang H; OuYang LF; Liu Q; Zhang L; Tian LJ; Chen Y
    J Sep Sci; 2011 May; 34(10):1212-9. PubMed ID: 21495187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed, whole-column fluorescence imaging detection for isoelectric focusing on a microchip using an organic light emitting diode as light source.
    Yao B; Yang H; Liang Q; Luo G; Wang L; Ren K; Gao Y; Wang Y; Qiu Y
    Anal Chem; 2006 Aug; 78(16):5845-50. PubMed ID: 16906731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on stability mechanism of immobilized pH gradient in isoelectric focusing via the Svensson-Tiselius differential equation and moving reaction boundary.
    Guo CG; Li S; Wang HY; Zhang D; Li GQ; Zhang J; Fan LY; Cao CX
    Talanta; 2013 Jul; 111():20-7. PubMed ID: 23622521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carrier ampholytes for IEF, on their fortieth anniversary (1967-2007), brought to trial in court: the verdict.
    Righetti PG; Simó C; Sebastiano R; Citterio A
    Electrophoresis; 2007 Nov; 28(21):3799-810. PubMed ID: 17922506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel isoelectric focusing II.
    Zilberstein GV; Baskin EM; Bukshpan S; Korol LE
    Electrophoresis; 2004 Nov; 25(21-22):3643-51. PubMed ID: 15565700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Moving reaction boundary and isoelectric focusing: IV. Systemic study on Hjertén's pH gradient mobilization.
    Xu YJ; Li S; Zhang W; Fan LY; Shao J; Cao CX
    J Sep Sci; 2009 Feb; 32(4):585-96. PubMed ID: 19212973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steady-state concentration distribution of ampholytes in isoelectric focusing in a linear immobilized pH gradient.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1998 Jul; 19(10):1596-600. PubMed ID: 9719532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in IEF in capillary tubes and microchips.
    Shimura K
    Electrophoresis; 2009 Jan; 30(1):11-28. PubMed ID: 19107704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.