These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20925379)

  • 1. Seed coat phenolics and the developing silique transcriptome of Brassica carinata.
    Li X; Westcott N; Links M; Gruber MY
    J Agric Food Chem; 2010 Oct; 58(20):10918-28. PubMed ID: 20925379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus.
    Marles MA; Gruber MY; Scoles GJ; Muir AD
    Phytochemistry; 2003 Mar; 62(5):663-72. PubMed ID: 12620317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolic composition analysis and gene expression in developing seeds of yellow- and black-seeded Brassica napus.
    Jiang J; Shao Y; Li A; Lu C; Zhang Y; Wang Y
    J Integr Plant Biol; 2013 Jun; 55(6):537-51. PubMed ID: 23445079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.
    Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S
    G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus.
    Qu C; Fu F; Lu K; Zhang K; Wang R; Xu X; Wang M; Lu J; Wan H; Zhanglin T; Li J
    J Exp Bot; 2013 Jul; 64(10):2885-98. PubMed ID: 23698630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Analysis of Seed Coats in Yellow-Seeded
    Hong M; Hu K; Tian T; Li X; Chen L; Zhang Y; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J
    Front Plant Sci; 2017; 8():1674. PubMed ID: 29051765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.
    Liu H; Yang Q; Fan C; Zhao X; Wang X; Zhou Y
    Plant Sci; 2015 Apr; 233():186-199. PubMed ID: 25711826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus.
    Zhang K; Lu K; Qu C; Liang Y; Wang R; Chai Y; Li J
    PLoS One; 2013; 8(4):e61247. PubMed ID: 23613820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content.
    Lohaus G; Moellers C
    Planta; 2000 Nov; 211(6):833-40. PubMed ID: 11144268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines.
    Canam T; Li X; Holowachuk J; Yu M; Xia J; Mandal R; Krishnamurthy R; Bouatra S; Sinelnikov I; Yu B; Grenkow L; Wishart DS; Steppuhn H; Falk KC; Dumonceaux TJ; Gruber MY
    Plant Sci; 2013 Jan; 198():17-26. PubMed ID: 23199683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on Brassica carinata seed. 1. Protein molecular structure in relation to protein nutritive values and metabolic characteristics.
    Xin H; Falk KC; Yu P
    J Agric Food Chem; 2013 Oct; 61(42):10118-26. PubMed ID: 24059852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detect changes in lipid-related structure of brown- and yellow-seeded Brassica Carinata seed during rumen fermentation in relation to basic chemical profile using ATR-FT/IR molecular spectroscopy with chemometrics.
    Xin H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():811-7. PubMed ID: 25000568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on Brassica carinata seed. 2. Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values, and biodegradation characteristics.
    Xin H; Falk KC; Yu P
    J Agric Food Chem; 2013 Oct; 61(42):10127-34. PubMed ID: 24059242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids.
    Liu X; Lu Y; Yuan Y; Liu S; Guan C; Chen S; Liu Z
    PLoS One; 2013; 8(8):e71110. PubMed ID: 23990927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L.
    Auger B; Marnet N; Gautier V; Maia-Grondard A; Leprince F; Renard M; Guyot S; Nesi N; Routaboul JM
    J Agric Food Chem; 2010 May; 58(10):6246-56. PubMed ID: 20429588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development.
    Song J; Jiang L; Jameson PE
    J Exp Bot; 2015 Aug; 66(16):5067-82. PubMed ID: 25873685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses.
    Tan H; Xiang X; Tang J; Wang X
    Plant Mol Biol; 2016 Nov; 92(4-5):539-553. PubMed ID: 27539000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Knockout of
    Xie T; Chen X; Guo T; Rong H; Chen Z; Sun Q; Batley J; Jiang J; Wang Y
    J Agric Food Chem; 2020 May; 68(20):5676-5690. PubMed ID: 32394708
    [No Abstract]   [Full Text] [Related]  

  • 20. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level.
    Chen G; Deng W; Peng F; Truksa M; Singer S; Snyder CL; Mietkiewska E; Weselake RJ
    Plant J; 2013 May; 74(4):663-77. PubMed ID: 23425240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.