These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20925659)

  • 1. Effect of Auxins and Light on Rooting Stem Cuttings of Populus nigra Salix tetrasperma, Ipomea fistulosa and Hibiscus notodus in Relation to Polarity.
    Nanda KK; Purohit AN; Kochhar VK
    Physiol Plant; 1969; 22(6):1113-20. PubMed ID: 20925659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings.
    Yang H; Klopotek Y; Hajirezaei MR; Zerche S; Franken P; Druege U
    Ann Bot; 2019 Nov; 124(6):1053-1066. PubMed ID: 31181150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aeroponics for adventitious rhizogenesis in evergreen haloxeric tree
    Sharma U; Kataria V; Shekhawat NS
    Physiol Mol Biol Plants; 2018 Feb; 24(1):167-174. PubMed ID: 29398848
    [No Abstract]   [Full Text] [Related]  

  • 4. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings.
    Garrido G; Ramón Guerrero J; Angel Cano E; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2002 Feb; 114(2):303-312. PubMed ID: 11903978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.
    Klopotek Y; Haensch KT; Hause B; Hajirezaei MR; Druege U
    J Plant Physiol; 2010 May; 167(7):547-54. PubMed ID: 20047776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the auxin-cytokinin homeostasis in adventitious root formation of rose cuttings as affected by their nodal position in the stock plant.
    Otiende MA; Fricke K; Nyabundi JO; Ngamau K; Hajirezaei MR; Druege U
    Planta; 2021 Sep; 254(4):65. PubMed ID: 34487248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings.
    Greenwood MS; Cui X; Xu F
    Physiol Plant; 2001 Mar; 111(3):373-380. PubMed ID: 11240922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cutting propagation of Periploca forrestii and dynamic analyses of physiological and biochemical characteristitics related to adventitious roots formation].
    Gao J; Zeng XF; Liu XH; Yang SX
    Zhong Yao Cai; 2011 Jun; 34(6):841-5. PubMed ID: 22016997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.
    Greenwood MS; Goldsmith MH
    Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings.
    Greenwood MS; Weir RJ
    Tree Physiol; 1995 Jan; 15(1):41-5. PubMed ID: 14966010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model.
    Tonon G; Kevers C; Gaspar T
    Tree Physiol; 2001 Jul; 21(10):655-63. PubMed ID: 11446994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of 2,3,5-Triiodobenzoic Acid and 1-N-Naphthylphthalamic Acid on Indoleacetic Acid Transport in Carnation Cuttings: Relationship with Rooting.
    Guerrero JR; Garrido G; Acosta M; Sánchez-Bravo J
    J Plant Growth Regul; 1999 Dec; 18(4):183-190. PubMed ID: 10688708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Different Growth Regulators on the Rooting of
    Quan J; Ni R; Wang Y; Sun J; Ma M; Bi H
    Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and Physiological Changes during Early Adventitious Root Formation in
    Ghimire BK; Kim SH; Yu CY; Chung IM
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684213
    [No Abstract]   [Full Text] [Related]  

  • 15. Transcriptomic profiles of poplar (
    Yu Y; Meng N; Chen S; Zhang H; Liu Z; Wang Y; Jing Y; Wang Y; Chen S
    Front Genet; 2022; 13():968544. PubMed ID: 36160010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.
    Trobec M; Stampar F; Veberic R; Osterc G
    J Plant Physiol; 2005 May; 162(5):589-97. PubMed ID: 15940876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting induction and development of in vitro rooting in apple rootstocks.
    Sharma T; Modgil M; Thakur M
    Indian J Exp Biol; 2007 Sep; 45(9):824-9. PubMed ID: 17907750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early and late root formation in epicotyl cuttings of Pinus sylvestris after auxin treatment.
    Flygh G; Grönroos R; Gulin L; Von Arnold S
    Tree Physiol; 1993 Jan; 12(1):81-92. PubMed ID: 14969936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls.
    López Nicolás JI; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2004 Jun; 121(2):294-304. PubMed ID: 15153197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Propagation Systems and Indole-3-Butyric Acid Potassium Salt (K-IBA) Concentrations on the Propagation of Peach Rootstocks by Stem Cuttings.
    Lesmes-Vesga RA; Chaparro JX; Sarkhosh A; Ritenour MA; Cano LM; Rossi L
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34204091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.