These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 20925677)
1. Stimulating Effect of Pentoses on the Utilization of Galactose in Ophiostoma multiannulatum. Lindberg M Physiol Plant; 1969; 22(6):1273-81. PubMed ID: 20925677 [TBL] [Abstract][Full Text] [Related]
2. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. Sues A; Millati R; Edebo L; Taherzadeh MJ FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667 [TBL] [Abstract][Full Text] [Related]
3. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Rodrussamee N; Lertwattanasakul N; Hirata K; Suprayogi ; Limtong S; Kosaka T; Yamada M Appl Microbiol Biotechnol; 2011 May; 90(4):1573-86. PubMed ID: 21476140 [TBL] [Abstract][Full Text] [Related]
4. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose. Bolen PL; Detroy RW Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673 [TBL] [Abstract][Full Text] [Related]
5. Digestibility of pentose sugars and uronic acids and their effect on chick weight gain and caecal size. Longstaff MA; Knox A; McNab JM Br Poult Sci; 1988 Jun; 29(2):379-93. PubMed ID: 3409082 [TBL] [Abstract][Full Text] [Related]
6. Conversion of pentoses to ethanol by yeasts and fungi. Schneider H Crit Rev Biotechnol; 1989; 9(1):1-40. PubMed ID: 2670247 [TBL] [Abstract][Full Text] [Related]
7. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932 [TBL] [Abstract][Full Text] [Related]
8. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382 [TBL] [Abstract][Full Text] [Related]
9. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger. Mojzita D; Koivistoinen OM; Maaheimo H; Penttilä M; Ruohonen L; Richard P Fungal Genet Biol; 2012 Feb; 49(2):152-9. PubMed ID: 22155165 [TBL] [Abstract][Full Text] [Related]
10. Regulation of formation of the intracellular beta-galactosidase activity of Aspergillus nidulans. Fekete E; Karaffa L; Sándor E; Seiboth B; Biró S; Szentirmai A; Kubicek CP Arch Microbiol; 2002 Dec; 179(1):7-14. PubMed ID: 12471499 [TBL] [Abstract][Full Text] [Related]
11. Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacteriumthermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Lynd LR; Baskaran S; Casten S Biotechnol Prog; 2001; 17(1):118-25. PubMed ID: 11170489 [TBL] [Abstract][Full Text] [Related]
12. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Fonseca C; Spencer-Martins I; Hahn-Hägerdal B Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211 [TBL] [Abstract][Full Text] [Related]
13. Conversion of pentoses by yeasts. Gong CS; Claypool TA; McCracken LD; Maun CM; Ueng PP; Tsao GT Biotechnol Bioeng; 1983 Jan; 25(1):85-102. PubMed ID: 18548540 [TBL] [Abstract][Full Text] [Related]
14. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
15. D-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger. Fekete E; de Vries RP; Seiboth B; vanKuyk PA; Sándor E; Fekete E; Metz B; Kubicek CP; Karaffa L FEMS Microbiol Lett; 2012 Apr; 329(2):198-203. PubMed ID: 22324294 [TBL] [Abstract][Full Text] [Related]
16. Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicellulose hydrolyzate. Sampaio FC; de Faria JT; Coimbra JS; Lopes Passos FM; Converti A; Minin LA Bioprocess Biosyst Eng; 2009 Oct; 32(6):747-54. PubMed ID: 19184115 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of inactivation of UDP-glucose 4-epimerase from Saccharomyces cerevisiae by D-xylose and L-arabinose. Cármenes RS; Gascón S; Moreno F Yeast; 1986 Jun; 2(2):101-8. PubMed ID: 3333299 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of hexoses and pentoses using lead cationization. An electrospray ionization and tandem mass spectrometric study. Salpin JY; Tortajada J J Mass Spectrom; 2002 Apr; 37(4):379-88. PubMed ID: 11948844 [TBL] [Abstract][Full Text] [Related]
19. Studies on the physical state of water in living cells and model systems. XI. The equilibrium distribution coefficients of pentoses in muscle cell water: their dependence primarily on the molecular weights of the pentoses and lesser dependence on their stereospecificity. Ling GN; Ochsenfeld MM Physiol Chem Phys Med NMR; 1988; 20(4):309-17. PubMed ID: 3254540 [TBL] [Abstract][Full Text] [Related]
20. [Effect of monosaccharides on the proliferation of normal embryonic fibroblast-like cells in monolayer cultures]. Fetisova EK; Vidershaĭn GIa Tsitologiia; 1973 Aug; 15(8):1037-42. PubMed ID: 4798076 [No Abstract] [Full Text] [Related] [Next] [New Search]