These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20926085)

  • 1. The obstruction factor in size-exclusion chromatography. 1. The intraparticle obstruction factor.
    Richard DJ; Striegel AM
    J Chromatogr A; 2010 Nov; 1217(45):7131-7. PubMed ID: 20926085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.
    Otte T; Pasch H; Macko T; Brüll R; Stadler FJ; Kaschta J; Becker F; Buback M
    J Chromatogr A; 2011 Jul; 1218(27):4257-67. PubMed ID: 21238968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The obstruction factor in size-exclusion chromatography. 2. The interparticle, intraparticle, and total obstruction factors.
    Richard DJ; Striegel AM
    J Chromatogr A; 2012 Jun; 1241():69-75. PubMed ID: 22560342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic solvent modifier and temperature effects in non-aqueous size-exclusion chromatography on reversed-phase columns.
    Caltabiano AM; Foley JP; Striegel AM
    J Chromatogr A; 2018 Jan; 1531():83-103. PubMed ID: 29180220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography.
    Gritti F; Hochstrasser J; Svidrytski A; Hlushkou D; Tallarek U
    J Chromatogr A; 2020 Jun; 1620():460991. PubMed ID: 32115234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do column frits contribute to the on-column, flow-induced degradation of macromolecules?
    Striegel AM
    J Chromatogr A; 2014 Sep; 1359():147-55. PubMed ID: 25085820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical performance of multiple size-exclusion chromatography columns connected in series.
    Gritti F
    J Chromatogr A; 2020 Dec; 1634():461673. PubMed ID: 33189963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size exclusion chromatography of lignin: The mechanistic aspects and elimination of undesired secondary interactions.
    Andrianova AA; Yeudakimenka NA; Lilak SL; Kozliak EI; Ugrinov A; Sibi MP; Kubátová A
    J Chromatogr A; 2018 Jan; 1534():101-110. PubMed ID: 29292081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of band broadening in size-exclusion chromatography. I. A method based on analyzing narrow standards with a molar mass-sensitive detector.
    Yossen MM; Vega JR; Meira GR
    J Chromatogr A; 2006 Sep; 1128(1-2):171-80. PubMed ID: 16828786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer-volume effects in two-dimensional chromatography: adsorption-phenomena in second-dimension size-exclusion chromatography.
    Reingruber E; Jansen JJ; Buchberger W; Schoenmakers P
    J Chromatogr A; 2011 Feb; 1218(8):1147-52. PubMed ID: 21227427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the pore size distribution of high-performance liquid chromatography stationary phases via inverse size exclusion chromatography.
    Bacskay I; Sepsey A; Felinger A
    J Chromatogr A; 2014 Apr; 1339():110-7. PubMed ID: 24666937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superheated high temperature to improve size exclusion chromatography separation of polyethylene glycols with chloroform as the mobile phase.
    Lou X; van Dongen JL; Meijer EW
    J Chromatogr A; 2012 May; 1237():72-9. PubMed ID: 22463998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct determination of band broadening in size exclusion chromatography.
    Schnöll-Bitai I
    J Chromatogr A; 2005 Aug; 1084(1-2):160-6. PubMed ID: 16114249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band broadening in size-exclusion chromatography of polydisperse samples.
    Popovici ST; Kok WT; Schoenmakers PJ
    J Chromatogr A; 2004 Dec; 1060(1-2):237-52. PubMed ID: 15628166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the interparticle void volume in packed beds via intraparticle Donnan exclusion.
    Jung S; Ehlert S; Pattky M; Tallarek U
    J Chromatogr A; 2010 Jan; 1217(5):696-704. PubMed ID: 20031142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of void volume, mobile phase volume and accessible volume determined from retention data for oligomers in reversed-phase liquid chromatographic systems.
    Wang M; Mallette J; Parcher JF
    J Chromatogr A; 2011 May; 1218(20):2995-3001. PubMed ID: 21481886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A broad-standard technique for correcting for band broadening in size-exclusion chromatography.
    Zhang P; Mazoyer P; Gilbert RG
    J Chromatogr A; 2016 Apr; 1443():267-71. PubMed ID: 27016112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward ideal separation by size-exclusion chromatography.
    Netopilík M
    J Chromatogr A; 2017 Mar; 1487():139-146. PubMed ID: 28139225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation and interpretation of band broadening in size exclusion chromatography.
    Busnel JP; Foucault F; Denis L; Lee W; Chang T
    J Chromatogr A; 2001 Sep; 930(1-2):61-71. PubMed ID: 11681580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.