These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20926157)

  • 1. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Lowry GV
    J Contam Hydrol; 2010 Nov; 118(3-4):152-64. PubMed ID: 20926157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 Jul; 43(13):5079-85. PubMed ID: 19673310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy.
    Phenrat T; Fagerlund F; Illangasekare T; Lowry GV; Tilton RD
    Environ Sci Technol; 2011 Jul; 45(14):6102-9. PubMed ID: 21678951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach.
    Tosco T; Sethi R
    Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column.
    Hosseini SM; Tosco T
    Water Res; 2013 Jan; 47(1):326-38. PubMed ID: 23141767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe
    Babakhani P; Fagerlund F; Shamsai A; Lowry GV; Phenrat T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7180-7199. PubMed ID: 26300356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum.
    Vecchia ED; Luna M; Sethi R
    Environ Sci Technol; 2009 Dec; 43(23):8942-7. PubMed ID: 19943670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.
    Saleh N; Kim HJ; Phenrat T; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2008 May; 42(9):3349-55. PubMed ID: 18522117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study.
    Wei YT; Wu SC
    Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.
    Kim HJ; Phenrat T; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 May; 43(10):3824-30. PubMed ID: 19544894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.
    Wei CJ; Li XY
    Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.
    Basnet M; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.