These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 20926159)
1. Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. Maserti BE; Del Carratore R; Croce CM; Podda A; Migheli Q; Froelicher Y; Luro F; Morillon R; Ollitrault P; Talon M; Rossignol M J Plant Physiol; 2011 Mar; 168(4):392-402. PubMed ID: 20926159 [TBL] [Abstract][Full Text] [Related]
2. A stress responsive alternative splicing mechanism in Citrus clementina leaves. Del Carratore R; Magaldi E; Podda A; Beffy P; Migheli Q; Maserti BE J Plant Physiol; 2011 Jun; 168(9):952-9. PubMed ID: 21310505 [TBL] [Abstract][Full Text] [Related]
3. Expression profiling of two stress-inducible genes encoding for miraculin-like proteins in citrus plants under insect infestation or salinity stress. Podda A; Simili M; Del Carratore R; Mouhaya W; Morillon R; Maserti BE J Plant Physiol; 2014 Jan; 171(1):45-54. PubMed ID: 24001970 [TBL] [Abstract][Full Text] [Related]
4. The influence of methyl jasmonate (JA-Me) and B-glucosidase on induction of resistance mechanisms of strawberry against two-spotted spider mite (Tetranychus urticae Koch.). Warabieda W; Miszczak A; Olszak RW Commun Agric Appl Biol Sci; 2005; 70(4):829-36. PubMed ID: 16628924 [TBL] [Abstract][Full Text] [Related]
5. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Gharechahi J; Khalili M; Hasanloo T; Salekdeh GH Plant Physiol Biochem; 2013 Sep; 70():115-22. PubMed ID: 23771036 [TBL] [Abstract][Full Text] [Related]
6. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. Dworak A; Nykiel M; Walczak B; Miazek A; Szworst-Łupina D; Zagdańska B; Kiełkiewicz M Planta; 2016 Oct; 244(4):939-60. PubMed ID: 27334025 [TBL] [Abstract][Full Text] [Related]
7. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. Chen Y; Pang Q; Dai S; Wang Y; Chen S; Yan X J Plant Physiol; 2011 Jul; 168(10):995-1008. PubMed ID: 21377756 [TBL] [Abstract][Full Text] [Related]
8. Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus. Agut B; Gamir J; Jaques JA; Flors V New Phytol; 2015 Aug; 207(3):790-804. PubMed ID: 25771705 [TBL] [Abstract][Full Text] [Related]
9. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. Agut B; Gamir J; Jaques JA; Flors V J Exp Bot; 2016 Oct; 67(19):5711-5723. PubMed ID: 27683726 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
11. The influence of methyl jasmonate and beta-glucosidase on induction of apple tree resistance mechanisms to two-spotted spider mite (Tetranychus urncae Koch.). Warabieda W; Miszczak A; Olszak RW Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):265-70. PubMed ID: 15149117 [TBL] [Abstract][Full Text] [Related]
12. Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. Capra E; Colombi C; De Poli P; Nocito FF; Cocucci M; Vecchietti A; Marocco A; Stile MR; Rossini L J Plant Physiol; 2015 Mar; 175():68-77. PubMed ID: 25506768 [TBL] [Abstract][Full Text] [Related]
13. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions. Swaroopa Rani T; Podile AR Physiol Plant; 2014 Apr; 150(4):565-79. PubMed ID: 24117905 [TBL] [Abstract][Full Text] [Related]
14. Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Ferry N; Stavroulakis S; Guan W; Davison GM; Bell HA; Weaver RJ; Down RE; Gatehouse JA; Gatehouse AM Proteomics; 2011 May; 11(10):1985-2002. PubMed ID: 21500340 [TBL] [Abstract][Full Text] [Related]
15. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress. Farooq MA; Zhang K; Islam F; Wang J; Athar HUR; Nawaz A; Ullah Zafar Z; Xu J; Zhou W Proteomics; 2018 May; 18(10):e1700290. PubMed ID: 29528557 [TBL] [Abstract][Full Text] [Related]
16. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. Alvarez S; Zhu M; Chen S J Proteomics; 2009 Nov; 73(1):30-40. PubMed ID: 19628057 [TBL] [Abstract][Full Text] [Related]
17. A sugarcane pathogenesis-related protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. Peng Q; Su Y; Ling H; Ahmad W; Gao S; Guo J; Que Y; Xu L Plant Cell Rep; 2017 Sep; 36(9):1427-1440. PubMed ID: 28634719 [TBL] [Abstract][Full Text] [Related]
18. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of Kurowska MM; Daszkowska-Golec A; Gajecka M; Kościelniak P; Bierza W; Szarejko I Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570736 [TBL] [Abstract][Full Text] [Related]
19. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. Oliveira MB; Junior ML; Grossi-de-Sá MF; Petrofeza S J Plant Physiol; 2015 Jun; 182():13-22. PubMed ID: 26037694 [TBL] [Abstract][Full Text] [Related]
20. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. Zhu M; Dai S; Zhu N; Booy A; Simons B; Yi S; Chen S J Proteome Res; 2012 Jul; 11(7):3728-42. PubMed ID: 22639841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]