BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 20926199)

  • 1. Temporally controlled multiple-gene delivery in scaffolds: A promising strategy to enhance bone regeneration.
    Liu J; Xu L; Li Y; Ma J
    Med Hypotheses; 2011 Feb; 76(2):173-5. PubMed ID: 20926199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects.
    Huri PY; Huri G; Yasar U; Ucar Y; Dikmen N; Hasirci N; Hasirci V
    Biomed Mater; 2013 Aug; 8(4):045009. PubMed ID: 23782488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration.
    Xiao C; Zhou H; Liu G; Zhang P; Fu Y; Gu P; Hou H; Tang T; Fan X
    Biomed Mater; 2011 Feb; 6(1):015013. PubMed ID: 21252414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future of local bone regeneration - Protein versus gene therapy.
    Fischer J; Kolk A; Wolfart S; Pautke C; Warnke PH; Plank C; Smeets R
    J Craniomaxillofac Surg; 2011 Jan; 39(1):54-64. PubMed ID: 20434921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward delivery of multiple growth factors in tissue engineering.
    Chen FM; Zhang M; Wu ZF
    Biomaterials; 2010 Aug; 31(24):6279-308. PubMed ID: 20493521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering by gene delivery.
    Kofron MD; Laurencin CT
    Adv Drug Deliv Rev; 2006 Jul; 58(4):555-76. PubMed ID: 16790291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo bone morphogenetic protein-2 gene delivery using gingival fibroblasts promotes bone regeneration in rats.
    Shin JH; Kim KH; Kim SH; Koo KT; Kim TI; Seol YJ; Ku Y; Rhyu IC; Chung CP; Lee YM
    J Clin Periodontol; 2010 Mar; 37(3):305-11. PubMed ID: 20041973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.
    Lee SH; Shin H
    Adv Drug Deliv Rev; 2007 May; 59(4-5):339-59. PubMed ID: 17499384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering.
    Schek RM; Wilke EN; Hollister SJ; Krebsbach PH
    Biomaterials; 2006 Mar; 27(7):1160-6. PubMed ID: 16112727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus-based gene therapy strategies for bone regeneration.
    Phillips JE; Gersbach CA; García AJ
    Biomaterials; 2007 Jan; 28(2):211-29. PubMed ID: 16928397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of endogenous regenerative technology for in situ regenerative medicine.
    Anitua E; Sánchez M; Orive G
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):741-52. PubMed ID: 20102730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration.
    Feng L; Milner DJ; Xia C; Nye HL; Redwood P; Cameron JA; Stocum DL; Fang N; Jasiuk I
    Tissue Eng Part A; 2011 Mar; 17(5-6):691-701. PubMed ID: 20929280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative efficacy of dermal fibroblast-mediated and direct adenoviral bone morphogenetic protein-2 gene therapy for bone regeneration in an equine rib model.
    Ishihara A; Zekas LJ; Weisbrode SE; Bertone AL
    Gene Ther; 2010 Jun; 17(6):733-44. PubMed ID: 20220786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4).
    Huang YC; Simmons C; Kaigler D; Rice KG; Mooney DJ
    Gene Ther; 2005 Mar; 12(5):418-26. PubMed ID: 15647766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor delivery for bone tissue repair: an update.
    Varkey M; Gittens SA; Uludag H
    Expert Opin Drug Deliv; 2004 Nov; 1(1):19-36. PubMed ID: 16296718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone morphogenetic proteins and tissue engineering: future directions.
    Calori GM; Donati D; Di Bella C; Tagliabue L
    Injury; 2009 Dec; 40 Suppl 3():S67-76. PubMed ID: 20082795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic effects of bone-morphogenetic-protein-2 plasmid gene transfer.
    Seol YJ; Kim KH; Park YJ; Lee YM; Ku Y; Rhyu IC; Lee SJ; Han SB; Chung CP
    Biotechnol Appl Biochem; 2008 Jan; 49(Pt 1):85-96. PubMed ID: 17608624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.