BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20926380)

  • 21. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein.
    Cody CW; Prasher DC; Westler WM; Prendergast FG; Ward WW
    Biochemistry; 1993 Feb; 32(5):1212-8. PubMed ID: 8448132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture).
    Tsien RY
    Angew Chem Int Ed Engl; 2009; 48(31):5612-26. PubMed ID: 19565590
    [No Abstract]   [Full Text] [Related]  

  • 23. Mutants of Discosoma red fluorescent protein with a GFP-like chromophore.
    Wiehler J; von Hummel J; Steipe B
    FEBS Lett; 2001 Jan; 487(3):384-9. PubMed ID: 11163363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Infrared Fluorescent Protein iRFP as an Acceptor for Förster Resonance Energy Transfer].
    Zlobovskaya OA; Sarkisyan KS; Lukyanov KA
    Bioorg Khim; 2015; 41(3):299-304. PubMed ID: 26502606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression, purification and characterization of a photoprotein, clytin, from Clytia gregarium.
    Inouye S; Sahara Y
    Protein Expr Purif; 2007 Jun; 53(2):384-9. PubMed ID: 17275329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of protein-protein interactions in living cells using luminescence resonance energy transfer (LRET) from Renilla luciferase to Aequorea GFP.
    Wang Y; Wang G; O'Kane DJ; Szalay AA
    Mol Gen Genet; 2001 Jan; 264(5):578-87. PubMed ID: 11212912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins.
    Joosen L; Hink MA; Gadella TW; Goedhart J
    J Microsc; 2014 Dec; 256(3):166-76. PubMed ID: 25179491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein.
    Stepanyuk GA; Golz S; Markova SV; Frank LA; Lee J; Vysotski ES
    FEBS Lett; 2005 Feb; 579(5):1008-14. PubMed ID: 15710383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca(2+)-regulated photoprotein berovin.
    Burakova LP; Stepanyuk GA; Eremeeva EV; Vysotski ES
    Photochem Photobiol Sci; 2016 May; 15(5):691-704. PubMed ID: 27117544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perspectives on Bioluminescence Mechanisms.
    Lee J
    Photochem Photobiol; 2017 Mar; 93(2):389-404. PubMed ID: 27748947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Calcium-regulated photoproteins of marine coelenterates].
    Vysotskiĭ ES; Markova SV; Frank LA
    Mol Biol (Mosk); 2006; 40(3):404-17. PubMed ID: 16813160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All Ca(2+)-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg(2+)-loaded apo-berovin.
    Burakova LP; Natashin PV; Malikova NP; Niu F; Pu M; Vysotski ES; Liu ZJ
    J Photochem Photobiol B; 2016 Jan; 154():57-66. PubMed ID: 26690016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and dynamics of green fluorescent protein.
    Phillips GN
    Curr Opin Struct Biol; 1997 Dec; 7(6):821-7. PubMed ID: 9434902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training GFP to fold.
    Evanko D
    Nat Methods; 2006 Feb; 3(2):76. PubMed ID: 16468177
    [No Abstract]   [Full Text] [Related]  

  • 35. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer.
    Raicu V; Jansma DB; Miller RJ; Friesen JD
    Biochem J; 2005 Jan; 385(Pt 1):265-77. PubMed ID: 15352875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.
    Kim H; Zou T; Modi C; Dörner K; Grunkemeyer TJ; Chen L; Fromme R; Matz MV; Ozkan SB; Wachter RM
    Structure; 2015 Jan; 23(1):34-43. PubMed ID: 25565105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances using green and red fluorescent protein variants.
    Müller-Taubenberger A; Anderson KI
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.
    Meenan NA; Sharma A; Fleishman SJ; Macdonald CJ; Morel B; Boetzel R; Moore GR; Baker D; Kleanthous C
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10080-5. PubMed ID: 20479265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aequorea victoria bioluminescence moves into an exciting new era.
    Kendall JM; Badminton MN
    Trends Biotechnol; 1998 May; 16(5):216-24. PubMed ID: 9621461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding, improving and using green fluorescent proteins.
    Cubitt AB; Heim R; Adams SR; Boyd AE; Gross LA; Tsien RY
    Trends Biochem Sci; 1995 Nov; 20(11):448-55. PubMed ID: 8578587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.