These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20926444)

  • 1. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants.
    Narendra A; Reid SF; Greiner B; Peters RA; Hemmi JM; Ribi WA; Zeil J
    Proc Biol Sci; 2011 Apr; 278(1709):1141-9. PubMed ID: 20926444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocellar structure is driven by the mode of locomotion and activity time in
    Narendra A; Ribi WA
    J Exp Biol; 2017 Dec; 220(Pt 23):4383-4390. PubMed ID: 29187620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants.
    Sheehan ZBV; Kamhi JF; Seid MA; Narendra A
    J Comp Neurol; 2019 May; 527(7):1261-1277. PubMed ID: 30592041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches.
    Narendra A; Greiner B; Ribi WA; Zeil J
    J Exp Biol; 2016 Aug; 219(Pt 16):2435-42. PubMed ID: 27535985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants.
    Narendra A; Kamhi JF; Ogawa Y
    Integr Comp Biol; 2017 Nov; 57(5):1104-1116. PubMed ID: 28985392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The properties of the visual system in the Australian desert ant Melophorus bagoti.
    Schwarz S; Narendra A; Zeil J
    Arthropod Struct Dev; 2011 Mar; 40(2):128-34. PubMed ID: 21044895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants.
    Jayatilaka P; Narendra A; Reid SF; Cooper P; Zeil J
    J Exp Biol; 2011 Aug; 214(Pt 16):2730-8. PubMed ID: 21795570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus.
    Narendra A; Ramirez-Esquivel F; Ribi WA
    Sci Rep; 2016 Mar; 6():22331. PubMed ID: 26975481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocellar spatial vision in Myrmecia ants.
    Penmetcha B; Ogawa Y; Ryan LA; Hart NS; Narendra A
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34542631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.
    Schwarz S; Albert L; Wystrach A; Cheng K
    J Exp Biol; 2011 Mar; 214(Pt 6):901-6. PubMed ID: 21346116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova.
    Narendra A; Alkaladi A; Raderschall CA; Robson SK; Ribi WA
    PLoS One; 2013; 8(10):e76015. PubMed ID: 24155883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.
    Ogawa Y; Falkowski M; Narendra A; Zeil J; Hemmi JM
    Proc Biol Sci; 2015 Jun; 282(1808):20150673. PubMed ID: 25994678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex and caste-specific variation in compound eye morphology of five honeybee species.
    Streinzer M; Brockmann A; Nagaraja N; Spaethe J
    PLoS One; 2013; 8(2):e57702. PubMed ID: 23460896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color, activity period, and eye structure in four lineages of ants: Pale, nocturnal species have evolved larger eyes and larger facets than their dark, diurnal congeners.
    Johnson RA; Rutowski RL
    PLoS One; 2022; 17(9):e0257779. PubMed ID: 36137088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nocturnal
    Ogawa Y; Narendra A; Hemmi JM
    iScience; 2022 Apr; 25(4):104134. PubMed ID: 35402879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes?
    Frederiksen R; Warrant EJ
    J Exp Biol; 2008 Mar; 211(Pt 6):844-51. PubMed ID: 18310109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new navigational mechanism mediated by ant ocelli.
    Schwarz S; Wystrach A; Cheng K
    Biol Lett; 2011 Dec; 7(6):856-8. PubMed ID: 21733873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual ecology of Indian carpenter bees I: light intensities and flight activity.
    Somanathan H; Borges RM; Warrant EJ; Kelber A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):97-107. PubMed ID: 18094978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata.
    Somanathan H; Warrant EJ; Borges RM; Wallén R; Kelber A
    J Exp Biol; 2009 Aug; 212(Pt 15):2448-53. PubMed ID: 19617438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles.
    Somanathan H; Kelber A; Borges RM; Wallén R; Warrant EJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):571-83. PubMed ID: 19363615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.