BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20926578)

  • 1. cis-Acting sequences that contribute to synthesis of minus-strand DNA are not conserved between hepadnaviruses.
    Maguire ML; Loeb DD
    J Virol; 2010 Dec; 84(24):12824-31. PubMed ID: 20926578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Previously unsuspected cis-acting sequences for DNA replication revealed by characterization of a chimeric heron/duck hepatitis B virus.
    Mueller-Hill K; Loeb DD
    J Virol; 1996 Dec; 70(12):8310-7. PubMed ID: 8970950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA.
    Chen Y; Marion PL
    J Virol; 1996 Sep; 70(9):6151-6. PubMed ID: 8709240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory activity of dioxolane purine analogs on wild-type and lamivudine-resistant mutants of hepadnaviruses.
    Seignères B; Pichoud C; Martin P; Furman P; Trépo C; Zoulim F
    Hepatology; 2002 Sep; 36(3):710-22. PubMed ID: 12198665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.
    Köck J; Rösler C; Zhang JJ; Blum HE; Nassal M; Thoma C
    PLoS Pathog; 2010 Sep; 6(9):e1001082. PubMed ID: 20824087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus.
    Lewellyn EB; Loeb DD
    J Virol; 2007 Jun; 81(12):6207-15. PubMed ID: 17409141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topology of hepatitis B virus pregenomic RNA promotes its replication.
    Abraham TM; Loeb DD
    J Virol; 2007 Nov; 81(21):11577-84. PubMed ID: 17699570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA.
    Staprans S; Loeb DD; Ganem D
    J Virol; 1991 Mar; 65(3):1255-62. PubMed ID: 1704925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous replacement of the supposed host determining region of avihepadnaviruses: high in vivo infectivity despite low infectivity for hepatocytes.
    Dallmeier K; Schultz U; Nassal M
    PLoS Pathog; 2008 Dec; 4(12):e1000230. PubMed ID: 19057662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
    Chen Y; Robinson WS; Marion PL
    J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of infectious and defective cloned avian hepadnavirus genomes.
    Wildner G; Fernholz D; Sprengel R; Schneider R; Will H
    Virology; 1991 Nov; 185(1):345-53. PubMed ID: 1926780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-Acting sequences in addition to donor and acceptor sites are required for template switching during synthesis of plus-strand DNA for duck hepatitis B virus.
    Havert MB; Loeb DD
    J Virol; 1997 Jul; 71(7):5336-44. PubMed ID: 9188603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral and cellular determinants involved in hepadnaviral entry.
    Glebe D; Urban S
    World J Gastroenterol; 2007 Jan; 13(1):22-38. PubMed ID: 17206752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of duck hepatitis B virus reverse transcription indicates a common mechanism for the two template switches during plus-strand DNA synthesis.
    Havert MB; Ji L; Loeb DD
    J Virol; 2002 Mar; 76(6):2763-9. PubMed ID: 11861843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA.
    Chang SF; Netter HJ; Bruns M; Schneider R; Frölich K; Will H
    Virology; 1999 Sep; 262(1):39-54. PubMed ID: 10489339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors.
    Zhang P; Liu F; Guo F; Zhao Q; Chang J; Guo JT
    Antiviral Res; 2016 Jul; 131():40-8. PubMed ID: 27083116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infection of ducklings with virus particles containing linear double-stranded duck hepatitis B virus DNA: illegitimate replication and reversion.
    Yang W; Summers J
    J Virol; 1998 Nov; 72(11):8710-7. PubMed ID: 9765413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The persistence in the liver of residual duck hepatitis B virus covalently closed circular DNA is not dependent upon new viral DNA synthesis.
    Reaiche GY; Le Mire MF; Mason WS; Jilbert AR
    Virology; 2010 Oct; 406(2):286-92. PubMed ID: 20705309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication.
    Jung J; Hwang SG; Chwae YJ; Park S; Shin HJ; Kim K
    J Virol; 2014 Aug; 88(16):8754-67. PubMed ID: 24850741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X gene-related sequences in the core gene of duck and heron hepatitis B viruses.
    Feitelson MA; Miller RH
    Proc Natl Acad Sci U S A; 1988 Aug; 85(16):6162-6. PubMed ID: 3261866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.