These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
557 related articles for article (PubMed ID: 20927138)
1. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. Xie W; Wang F; Guo L; Chen Z; Sievert SM; Meng J; Huang G; Li Y; Yan Q; Wu S; Wang X; Chen S; He G; Xiao X; Xu A ISME J; 2011 Mar; 5(3):414-26. PubMed ID: 20927138 [TBL] [Abstract][Full Text] [Related]
2. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
3. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604 [TBL] [Abstract][Full Text] [Related]
4. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. He Y; Xiao X; Wang F Front Microbiol; 2013; 4():148. PubMed ID: 23785357 [TBL] [Abstract][Full Text] [Related]
5. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. Tang K; Liu K; Jiao N; Zhang Y; Chen CT PLoS One; 2013; 8(8):e72958. PubMed ID: 23940820 [TBL] [Abstract][Full Text] [Related]
6. Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge. Cao H; Wang Y; Lee OO; Zeng X; Shao Z; Qian PY mBio; 2014 Jan; 5(1):e00980-13. PubMed ID: 24473131 [TBL] [Abstract][Full Text] [Related]
7. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Meier DV; Pjevac P; Bach W; Markert S; Schweder T; Jamieson J; Petersen S; Amann R; Meyerdierks A Environ Microbiol; 2019 Feb; 21(2):682-701. PubMed ID: 30585382 [TBL] [Abstract][Full Text] [Related]
8. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. Zhou Z; St John E; Anantharaman K; Reysenbach AL Microbiome; 2022 Dec; 10(1):241. PubMed ID: 36572924 [TBL] [Abstract][Full Text] [Related]
9. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Wang F; Zhou H; Meng J; Peng X; Jiang L; Sun P; Zhang C; Van Nostrand JD; Deng Y; He Z; Wu L; Zhou J; Xiao X Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4840-5. PubMed ID: 19273854 [TBL] [Abstract][Full Text] [Related]
10. Metagenomic Features Characterized with Microbial Iron Oxidoreduction and Mineral Interaction in Southwest Indian Ridge. Zhong YW; Zhou P; Cheng H; Zhou YD; Pan J; Xu L; Li M; Tao CH; Wu YH; Xu XW Microbiol Spectr; 2022 Dec; 10(6):e0061422. PubMed ID: 36286994 [TBL] [Abstract][Full Text] [Related]
11. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687 [TBL] [Abstract][Full Text] [Related]
12. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Dombrowski N; Seitz KW; Teske AP; Baker BJ Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260 [TBL] [Abstract][Full Text] [Related]
13. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. Anantharaman K; Breier JA; Dick GJ ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257 [TBL] [Abstract][Full Text] [Related]
14. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. Fortunato CS; Huber JA ISME J; 2016 Aug; 10(8):1925-38. PubMed ID: 26872039 [TBL] [Abstract][Full Text] [Related]
15. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
16. Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge. Pan J; Xu W; Zhou Z; Shao Z; Dong C; Liu L; Luo Z; Li M Microbiome; 2022 Jan; 10(1):8. PubMed ID: 35045876 [TBL] [Abstract][Full Text] [Related]
17. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Voordeckers JW; Do MH; Hügler M; Ko V; Sievert SM; Vetriani C Extremophiles; 2008 Sep; 12(5):627-40. PubMed ID: 18523725 [TBL] [Abstract][Full Text] [Related]
18. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Fortunato CS; Larson B; Butterfield DA; Huber JA Environ Microbiol; 2018 Feb; 20(2):769-784. PubMed ID: 29205750 [TBL] [Abstract][Full Text] [Related]
19. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic]. Xu H; Jiang L; Li S; Zhong T; Lai Q; Shao Z Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):88-100. PubMed ID: 27305783 [TBL] [Abstract][Full Text] [Related]
20. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. Lesniewski RA; Jain S; Anantharaman K; Schloss PD; Dick GJ ISME J; 2012 Dec; 6(12):2257-68. PubMed ID: 22695860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]