BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20927379)

  • 1. Ultra high throughput sequencing in human DNA variation detection: a comparative study on the NDUFA3-PRPF31 region.
    Benaglio P; Rivolta C
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.
    Farris MH; Scott AR; Texter PA; Bartlett M; Coleman P; Masters D
    BMC Bioinformatics; 2018 Apr; 19(1):126. PubMed ID: 29642839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of sequencing platforms for single nucleotide variant calls in a human sample.
    Ratan A; Miller W; Guillory J; Stinson J; Seshagiri S; Schuster SC
    PLoS One; 2013; 8(2):e55089. PubMed ID: 23405114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNP discovery by high-throughput sequencing in soybean.
    Wu X; Ren C; Joshi T; Vuong T; Xu D; Nguyen HT
    BMC Genomics; 2010 Aug; 11():469. PubMed ID: 20701770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Illumina Genome Analyzer and Roche 454 GS FLX for resequencing of hypertrophic cardiomyopathy-associated genes.
    Dames S; Durtschi J; Geiersbach K; Stephens J; Voelkerding KV
    J Biomol Tech; 2010 Jul; 21(2):73-80. PubMed ID: 20592870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphism discovery in high-throughput resequenced microarray-enriched human genomic loci.
    Antipova AA; Sokolsky TD; Clouser CR; Dimalanta ET; Hendrickson CL; Kosnopo C; Lee CC; Ranade SS; Zhang L; Blanchard AP; McKernan KJ
    J Biomol Tech; 2009 Dec; 20(5):253-7. PubMed ID: 19949697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A statistical method for the detection of variants from next-generation resequencing of DNA pools.
    Bansal V
    Bioinformatics; 2010 Jun; 26(12):i318-24. PubMed ID: 20529923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa.
    Sullivan LS; Bowne SJ; Seaman CR; Blanton SH; Lewis RA; Heckenlively JR; Birch DG; Hughbanks-Wheaton D; Daiger SP
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4579-88. PubMed ID: 17003455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newest Methods for Detecting Structural Variations.
    De Coster W; Van Broeckhoven C
    Trends Biotechnol; 2019 Sep; 37(9):973-982. PubMed ID: 30902345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light of Genotypization of Immortelle Plant (Helichrysium Arenarium).
    Hodzic J; Gurbeta L; Omanovic-Miklicanin E; Badnjevic A
    Med Arch; 2017 Aug; 71(4):288-292. PubMed ID: 28974852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large deletion in the adRP gene PRPF31: evidence that haploinsufficiency is the cause of disease.
    Abu-Safieh L; Vithana EN; Mantel I; Holder GE; Pelosini L; Bird AC; Bhattacharya SS
    Mol Vis; 2006 Apr; 12():384-8. PubMed ID: 16636657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single-base substitution within an intronic repetitive element causes dominant retinitis pigmentosa with reduced penetrance.
    Rio Frio T; McGee TL; Wade NM; Iseli C; Beckmann JS; Berson EL; Rivolta C
    Hum Mutat; 2009 Sep; 30(9):1340-7. PubMed ID: 19618371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNP discovery by transcriptome pyrosequencing.
    Barbazuk WB; Schnable PS
    Methods Mol Biol; 2011; 729():225-46. PubMed ID: 21365494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex padlock targeted sequencing reveals human hypermutable CpG variations.
    Li JB; Gao Y; Aach J; Zhang K; Kryukov GV; Xie B; Ahlford A; Yoon JK; Rosenbaum AM; Zaranek AW; LeProust E; Sunyaev SR; Church GM
    Genome Res; 2009 Sep; 19(9):1606-15. PubMed ID: 19525355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes.
    Hormozdiari F; Alkan C; Eichler EE; Sahinalp SC
    Genome Res; 2009 Jul; 19(7):1270-8. PubMed ID: 19447966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.
    Muraya MM; Schmutzer T; Ulpinnis C; Scholz U; Altmann T
    PLoS One; 2015; 10(7):e0132120. PubMed ID: 26151830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.
    Das A; Panitz F; Gregersen VR; Bendixen C; Holm LE
    BMC Genomics; 2015 Dec; 16():1043. PubMed ID: 26645365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Rapid, High-Quality, Cost-Effective, Comprehensive and Expandable Targeted Next-Generation Sequencing Assay for Inherited Heart Diseases.
    Wilson KD; Shen P; Fung E; Karakikes I; Zhang A; InanlooRahatloo K; Odegaard J; Sallam K; Davis RW; Lui GK; Ashley EA; Scharfe C; Wu JC
    Circ Res; 2015 Sep; 117(7):603-11. PubMed ID: 26265630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate detection and genotyping of SNPs utilizing population sequencing data.
    Bansal V; Harismendy O; Tewhey R; Murray SS; Schork NJ; Topol EJ; Frazer KA
    Genome Res; 2010 Apr; 20(4):537-45. PubMed ID: 20150320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.