BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20927612)

  • 21. In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induced Daxx sumoylation.
    Hwang J; Kalejta RF
    Methods; 2011 Oct; 55(2):160-5. PubMed ID: 21816224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
    Sarkar R
    Math Biosci; 2018 Jan; 295():67-72. PubMed ID: 29155132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO.
    Diehl C; Akke M; Bekker-Jensen S; Mailand N; Streicher W; Wikström M
    J Biol Chem; 2016 Jun; 291(24):12658-12672. PubMed ID: 27129204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1.
    Macauley MS; Errington WJ; Okon M; Schärpf M; Mackereth CD; Schulman BA; McIntosh LP
    J Biol Chem; 2004 Nov; 279(47):49131-7. PubMed ID: 15355965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An acetylation switch regulates SUMO-dependent protein interaction networks.
    Ullmann R; Chien CD; Avantaggiati ML; Muller S
    Mol Cell; 2012 Jun; 46(6):759-70. PubMed ID: 22578841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding properties of SUMO-interacting motifs (SIMs) in yeast.
    Jardin C; Horn AH; Sticht H
    J Mol Model; 2015 Mar; 21(3):50. PubMed ID: 25690366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2.
    Marcos-Villar L; Campagna M; Lopitz-Otsoa F; Gallego P; González-Santamaría J; González D; Rodriguez MS; Rivas C
    J Gen Virol; 2011 Jan; 92(Pt 1):188-94. PubMed ID: 20881090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standard Binding Free Energy of a SIM-SUMO Complex.
    Kötter A; Mootz HD; Heuer A
    J Chem Theory Comput; 2019 Nov; 15(11):6403-6410. PubMed ID: 31525924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SUMO protease SENP1 induces isomerization of the scissile peptide bond.
    Shen L; Tatham MH; Dong C; Zagórska A; Naismith JH; Hay RT
    Nat Struct Mol Biol; 2006 Dec; 13(12):1069-77. PubMed ID: 17099698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Backbone and side-chain resonance assignments of Plasmodium falciparum SUMO.
    Singh JS; Shukla VK; Gujrati M; Mishra RK; Kumar A
    Biomol NMR Assign; 2017 Apr; 11(1):17-20. PubMed ID: 27699617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM)-type zinc fingers in ZNF261 and ZNF198.
    Guzzo CM; Ringel A; Cox E; Uzoma I; Zhu H; Blackshaw S; Wolberger C; Matunis MJ
    PLoS One; 2014; 9(8):e105271. PubMed ID: 25133527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A FRET Sensor to Monitor Bivalent SUMO-SIM Interactions in SUMO Chain Binding.
    Kost LJ; Mootz HD
    Chembiochem; 2018 Jan; 19(2):177-184. PubMed ID: 29120074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A real-time SUMO-binding assay for the analysis of the SUMO-SIM protein interaction network.
    Tanaka N; Saitoh H
    Biosci Biotechnol Biochem; 2010; 74(6):1302-5. PubMed ID: 20530889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing the Conformational Dynamics of Human SUMO2: Insights into its Interaction with Metal Ions and SIMs.
    Kaur A; Singh H; Kumar D; Gahlay GK; Mithu VS
    Chembiochem; 2024 Jun; 25(11):e202400045. PubMed ID: 38593270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism.
    Guo J; Zhou HX
    Elife; 2016 Aug; 5():. PubMed ID: 27576863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stitched peptides as potential cell permeable inhibitors of oncogenic DAXX protein.
    Jelinska C; Kannan S; Frosi Y; Ramlan SR; Winnerdy F; Lakshminarayanan R; Johannes CW; Brown CJ; Phan AT; Rhodes D; Verma CS
    RSC Chem Biol; 2023 Nov; 4(12):1096-1110. PubMed ID: 38033728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Modification of the N Termini of Unprotected Peptides for Semisynthesis of Modified Proteins by Utilizing a Hydrophilic Protecting Group.
    Chandrashekar C; Okamoto R; Izumi M; Kajihara Y
    Chemistry; 2019 Aug; 25(43):10197-10203. PubMed ID: 31106456
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Tossavainen H; Hellman M; Vainonen JP; Kangasjärvi J; Permi P
    Biomol NMR Assign; 2017 Oct; 11(2):207-210. PubMed ID: 28593560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SUMmOning Daxx-mediated repression.
    Mukhopadhyay D; Matunis MJ
    Mol Cell; 2011 Apr; 42(1):4-5. PubMed ID: 21474063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders.
    Brüninghoff K; Wulff S; Dörner W; Geiss-Friedlander R; Mootz HD
    Front Chem; 2022; 10():900989. PubMed ID: 35707458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.