BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20929254)

  • 1. Transepithelial transport and metabolism of new lipophilic ether derivatives of hydroxytyrosol by enterocyte-like Caco-2/TC7 cells.
    Pereira-Caro G; Mateos R; Saha S; Madrona A; Espartero JL; Bravo L; Kroon PA
    J Agric Food Chem; 2010 Nov; 58(21):11501-9. PubMed ID: 20929254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Bioavailability and Metabolism of Nitroderivatives of Hydroxytyrosol Using Caco-2 and HepG2 Human Cell Models.
    Gallardo E; Sarria B; Espartero JL; Gonzalez Correa JA; Bravo-Clemente L; Mateos R
    J Agric Food Chem; 2016 Mar; 64(11):2289-97. PubMed ID: 26915652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives.
    Calderón-Montaño JM; Madrona A; Burgos-Morón E; Orta ML; Mateos S; Espartero JL; López-Lázaro M
    J Agric Food Chem; 2013 May; 61(21):5046-53. PubMed ID: 23638972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Foods and β-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo.
    Malapert A; Tomao V; Dangles O; Reboul E
    J Agric Food Chem; 2018 May; 66(18):4614-4620. PubMed ID: 29663812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and metabolism of new synthetic lipophilic derivatives, hydroxytyrosyl ethers, by human hepatoma HepG2 cells.
    Pereira-Caro G; Bravo L; Madrona A; Espartero JL; Mateos R
    J Agric Food Chem; 2010 Jan; 58(2):798-806. PubMed ID: 20030325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkyl hydroxytyrosyl ethers show protective effects against oxidative stress in HepG2 cells.
    Pereira-Caro G; Sarriá B; Madrona A; Espartero JL; Goya L; Bravo L; Mateos R
    J Agric Food Chem; 2011 Jun; 59(11):5964-76. PubMed ID: 21504144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells.
    Atzeri A; Lucas R; Incani A; Peñalver P; Zafra-Gómez A; Melis MP; Pizzala R; Morales JC; Deiana M
    Food Funct; 2016 Jan; 7(1):337-46. PubMed ID: 26488801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L; Yang XW
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells.
    Henry-Vitrac C; Desmoulière A; Girard D; Mérillon JM; Krisa S
    Eur J Nutr; 2006 Oct; 45(7):376-82. PubMed ID: 17009167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers.
    Pereira-Caro G; Sarriá B; Madrona A; Espartero JL; Escuderos ME; Bravo L; Mateos R
    Int J Food Sci Nutr; 2012 Sep; 63(6):703-7. PubMed ID: 22268563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caco-2/TC7 cell line characterization for intestinal absorption: how reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human?
    Turco L; Catone T; Caloni F; Di Consiglio E; Testai E; Stammati A
    Toxicol In Vitro; 2011 Feb; 25(1):13-20. PubMed ID: 20732406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells.
    Manna C; Galletti P; Maisto G; Cucciolla V; D'Angelo S; Zappia V
    FEBS Lett; 2000 Mar; 470(3):341-4. PubMed ID: 10745093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption and transport of pachymic acid in the human intestinal cell line Caco-2 monolayers.
    Zheng Y; Yang XW
    Zhong Xi Yi Jie He Xue Bao; 2008 Jul; 6(7):704-10. PubMed ID: 18601852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and metabolism of equol by Caco-2 human intestinal cells.
    Walsh KR; Failla ML
    J Agric Food Chem; 2009 Sep; 57(18):8297-302. PubMed ID: 19715333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on predict of absorption of corynanthine, yohimbine, ajmalicine and ajmaline across human intestinal epithelial by using human Caco-2 cells monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(20):2373-7. PubMed ID: 19157132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Absorption of triterpenoid compounds from Indian bread (Poria cocos) across human intestinal epithelial (Caco-2) cells in vitro].
    Zheng Y; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2008 Jul; 33(13):1596-601. PubMed ID: 18837324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco-2.
    Mizuuchi H; Katsura T; Hashimoto Y; Inui K
    Pharm Res; 2000 May; 17(5):539-45. PubMed ID: 10888305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells.
    Chen H; Attieh ZK; Dang T; Huang G; van der Hee RM; Vulpe C
    J Cell Biochem; 2009 Jul; 107(4):803-8. PubMed ID: 19452451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes.
    Inui K; Yamamoto M; Saito H
    J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.