BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

705 related articles for article (PubMed ID: 20929337)

  • 1. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles.
    Yue ZG; Wei W; Lv PP; Yue H; Wang LY; Su ZG; Ma GH
    Biomacromolecules; 2011 Jul; 12(7):2440-6. PubMed ID: 21657799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.
    Nam HY; Kwon SM; Chung H; Lee SY; Kwon SH; Jeon H; Kim Y; Park JH; Kim J; Her S; Oh YK; Kwon IC; Kim K; Jeong SY
    J Control Release; 2009 May; 135(3):259-67. PubMed ID: 19331853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan.
    Chiu YL; Ho YC; Chen YM; Peng SF; Ke CJ; Chen KJ; Mi FL; Sung HW
    J Control Release; 2010 Aug; 146(1):152-9. PubMed ID: 20580915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention.
    Yang C; Uertz J; Yohan D; Chithrani BD
    Nanoscale; 2014 Oct; 6(20):12026-33. PubMed ID: 25182693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles.
    Wang Y; Wang Y; Xiang J; Yao K
    Biomacromolecules; 2010 Dec; 11(12):3531-8. PubMed ID: 21086982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of gold nanoparticles with common human blood proteins.
    Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF
    ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of complexes of liposomes with gold nanoparticles.
    Kojima C; Hirano Y; Yuba E; Harada A; Kono K
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):246-52. PubMed ID: 18723331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles.
    Gao X; Wang T; Wu B; Chen J; Chen J; Yue Y; Dai N; Chen H; Jiang X
    Biochem Biophys Res Commun; 2008 Dec; 377(1):35-40. PubMed ID: 18823949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chapter 7 - Preparation of complexes of liposomes with gold nanoparticles.
    Kojima C; Hirano Y; Kono K
    Methods Enzymol; 2009; 464():131-45. PubMed ID: 19903553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of N-caproyl chitosan nanoparticles surface modified with glycyrrhizin for hepatocyte targeting.
    Lin A; Chen J; Liu Y; Deng S; Wu Z; Huang Y; Ping Q
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1348-55. PubMed ID: 19832635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy.
    Rago G; Bauer B; Svedberg F; Gunnarsson L; Ericson MB; Bonn M; Enejder A
    J Phys Chem B; 2011 May; 115(17):5008-16. PubMed ID: 21469683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.