These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20929769)

  • 41. Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities.
    Kim S; Rahman M; Seol SY; Yoon SS; Kim J
    Appl Environ Microbiol; 2012 Sep; 78(17):6380-5. PubMed ID: 22752161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers.
    Bahar O; De La Fuente L; Burdman S
    FEMS Microbiol Lett; 2010 Nov; 312(1):33-9. PubMed ID: 20807236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial mechanosensing: the force will be with you, always.
    Gordon VD; Wang L
    J Cell Sci; 2019 Apr; 132(7):. PubMed ID: 30944157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.
    Lee CK; de Anda J; Baker AE; Bennett RR; Luo Y; Lee EY; Keefe JA; Helali JS; Ma J; Zhao K; Golestanian R; O'Toole GA; Wong GCL
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4471-4476. PubMed ID: 29559526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins.
    Sonawane A; Jyot J; Ramphal R
    Infect Immun; 2006 Dec; 74(12):7035-9. PubMed ID: 17015462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-cell twitching chemotaxis in developing biofilms.
    Oliveira NM; Foster KR; Durham WM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6532-7. PubMed ID: 27222583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV Pili.
    Beaussart A; Baker AE; Kuchma SL; El-Kirat-Chatel S; O'Toole GA; Dufrêne YF
    ACS Nano; 2014 Oct; 8(10):10723-33. PubMed ID: 25286300
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming.
    Golovkine G; Lemelle L; Burny C; Vaillant C; Palierne JF; Place C; Huber P
    Sci Rep; 2016 Dec; 6():38950. PubMed ID: 27966607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Biofilm: set-up and organization of a bacterial community].
    Filloux A; Vallet I
    Med Sci (Paris); 2003 Jan; 19(1):77-83. PubMed ID: 12836195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry.
    Epstein AK; Hochbaum AI; Kim P; Aizenberg J
    Nanotechnology; 2011 Dec; 22(49):494007. PubMed ID: 22101439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.
    O'Toole GA; Kolter R
    Mol Microbiol; 1998 Oct; 30(2):295-304. PubMed ID: 9791175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility.
    Bradley DE
    Can J Microbiol; 1980 Feb; 26(2):146-54. PubMed ID: 6105908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa.
    Mikkelsen H; Sivaneson M; Filloux A
    Environ Microbiol; 2011 Jul; 13(7):1666-81. PubMed ID: 21554516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
    Bennett RR; Lee CK; De Anda J; Nealson KH; Yildiz FH; O'Toole GA; Wong GC; Golestanian R
    J R Soc Interface; 2016 Feb; 13(115):20150966. PubMed ID: 26864892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New aspects in the biology of Photobacterium damselae subsp. piscicida: pili, motility and adherence to solid surfaces.
    Remuzgo-Martínez S; Lázaro-Díez M; Padilla D; Vega B; El Aamri F; Icardo JM; Acosta F; Ramos-Vivas J
    Vet Microbiol; 2014 Nov; 174(1-2):247-54. PubMed ID: 25263496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation.
    Brill-Karniely Y; Jin F; Wong GC; Frenkel D; Dobnikar J
    Sci Rep; 2017 Apr; 7():45467. PubMed ID: 28393835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Homogenization of Pseudomonas aeruginosa PAO1 biofilms visualized by freeze-substitution electron microscopy.
    Guélon T; Hunter RC; Mathias JD; Deffuant G
    Biotechnol Bioeng; 2013 May; 110(5):1405-18. PubMed ID: 23239457
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface.
    Yamamoto K; Arai H; Ishii M; Igarashi Y
    Microbes Environ; 2012; 27(3):320-3. PubMed ID: 22353768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies.
    Bisht K; Klumpp S; Banerjee V; Marathe R
    Phys Rev E; 2017 Nov; 96(5-1):052411. PubMed ID: 29347676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct observation of extension and retraction of type IV pili.
    Skerker JM; Berg HC
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6901-4. PubMed ID: 11381130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.