These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20929769)

  • 81. Nanopillared Surfaces Disrupt Pseudomonas aeruginosa Mechanoresponsive Upstream Motility.
    Rosenzweig R; Perinbam K; Ly VK; Ahrar S; Siryaporn A; Yee AF
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10532-10539. PubMed ID: 30789254
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Bacterial nanotubes mediate bacterial growth on periodic nano-pillars.
    Cao Y; Jana S; Bowen L; Liu H; Jakubovics NS; Chen J
    Soft Matter; 2020 Aug; 16(32):7613-7623. PubMed ID: 32728681
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa.
    Qi L; Christopher GF
    Langmuir; 2019 Apr; 35(15):5294-5304. PubMed ID: 30883129
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Motility assay: twitching motility.
    Turnbull L; Whitchurch CB
    Methods Mol Biol; 2014; 1149():73-86. PubMed ID: 24818899
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Self-organization of bacterial biofilms is facilitated by extracellular DNA.
    Gloag ES; Turnbull L; Huang A; Vallotton P; Wang H; Nolan LM; Mililli L; Hunt C; Lu J; Osvath SR; Monahan LG; Cavaliere R; Charles IG; Wand MP; Gee ML; Prabhakar R; Whitchurch CB
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11541-6. PubMed ID: 23798445
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Surface Topography Hinders Bacterial Surface Motility.
    Chang YR; Weeks ER; Ducker WA
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9225-9234. PubMed ID: 29469562
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Analyzing bacterial movements on surfaces.
    Munteanu EL; Spielman I; Biais N
    Methods Cell Biol; 2015; 125():453-69. PubMed ID: 25640444
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Motility of Pseudomonas aeruginosa in saturated granular media as affected by chemoattractant.
    Chen J; Jin Y
    J Contam Hydrol; 2011 Sep; 126(1-2):113-20. PubMed ID: 21958516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. How bacteria block their own biofilms.
    Delerue T; Ramamurthi KS
    J Biol Chem; 2021; 296():100392. PubMed ID: 33839681
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa.
    Webster SS; Wong GCL; O'Toole GA
    J Bacteriol; 2022 Jun; 204(6):e0008422. PubMed ID: 35612303
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Bacteria differently deploy type-IV pili on surfaces to adapt to nutrient availability.
    Ni L; Yang S; Zhang R; Jin Z; Chen H; Conrad JC; Jin F
    NPJ Biofilms Microbiomes; 2016; 2():15029. PubMed ID: 28721239
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces.
    Secchi E; Vitale A; MiƱo GL; Kantsler V; Eberl L; Rusconi R; Stocker R
    Nat Commun; 2020 Jun; 11(1):2851. PubMed ID: 32503979
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa.
    Lecuyer S; Rusconi R; Shen Y; Forsyth A; Vlamakis H; Kolter R; Stone HA
    Biophys J; 2011 Jan; 100(2):341-50. PubMed ID: 21244830
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bacterial motility: machinery and mechanisms.
    Wadhwa N; Berg HC
    Nat Rev Microbiol; 2022 Mar; 20(3):161-173. PubMed ID: 34548639
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Type IV Pilus Shapes a 'Bubble-Burst' Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations.
    Wang M; Chen X; Ma Y; Tang YQ; Johnson DR; Nie Y; Wu XL
    Microbiol Spectr; 2022 Feb; 10(1):e0194421. PubMed ID: 35171019
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings.
    Yuan S; Qi M; Peng Q; Huang G; Liu J; Xu Z; Gong X; Zhang G
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111408. PubMed ID: 33099147
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hyperswarming adaptations in a bacterium improve collective motility without enhancing single cell motility.
    Deforet M; van Ditmarsch D; Carmona-Fontaine C; Xavier JB
    Soft Matter; 2014 Apr; 10(14):2405-13. PubMed ID: 24622509
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
    Ardekani AM; Gore E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056309. PubMed ID: 23004864
    [TBL] [Abstract][Full Text] [Related]  

  • 99. History-dependent attachment of
    Ritter AL; Chang YR; Benmamoun Z; Ducker WA
    Phys Biol; 2022 Dec; 20(1):. PubMed ID: 36541507
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Detecting cell division of Pseudomonas aeruginosa bacteria from bright-field microscopy images with hidden conditional random fields.
    Ong LS; Xinghua Zhang ; Kundukad B; Dauwels J; Doyle P; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3985-3988. PubMed ID: 28269158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.