These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 20929804)
1. Multiple exciton collection in a sensitized photovoltaic system. Sambur JB; Novet T; Parkinson BA Science; 2010 Oct; 330(6000):63-6. PubMed ID: 20929804 [TBL] [Abstract][Full Text] [Related]
2. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Zhu XY; Yang Q; Muntwiler M Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979 [TBL] [Abstract][Full Text] [Related]
3. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy. Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277 [TBL] [Abstract][Full Text] [Related]
4. Single-exciton optical gain in semiconductor nanocrystals. Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678 [TBL] [Abstract][Full Text] [Related]
5. Exciton multiplication from first principles. Jaeger HM; Hyeon-Deuk K; Prezhdo OV Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543 [TBL] [Abstract][Full Text] [Related]
6. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Nozik AJ Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844 [TBL] [Abstract][Full Text] [Related]
7. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Klimov VI J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970 [TBL] [Abstract][Full Text] [Related]
9. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Beard MC; Luther JM; Semonin OE; Nozik AJ Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604 [TBL] [Abstract][Full Text] [Related]
10. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies. Prezhdo OV Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715 [TBL] [Abstract][Full Text] [Related]
11. Dye sensitization of single crystal semiconductor electrodes. Spitler MT; Parkinson BA Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998 [TBL] [Abstract][Full Text] [Related]
12. Size dependence of the multiple exciton generation rate in CdSe quantum dots. Lin Z; Franceschetti A; Lusk MT ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556 [TBL] [Abstract][Full Text] [Related]
13. New aspects of carrier multiplication in semiconductor nanocrystals. McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342 [TBL] [Abstract][Full Text] [Related]
14. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Vanmaekelbergh D; Liljeroth P Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764 [TBL] [Abstract][Full Text] [Related]
15. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
16. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. Jaeger HM; Fischer S; Prezhdo OV J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209 [TBL] [Abstract][Full Text] [Related]
17. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Heremans P; Cheyns D; Rand BP Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055 [TBL] [Abstract][Full Text] [Related]
18. Efficiency of multiexciton generation in colloidal nanostructures. Shabaev A; Hellberg CS; Efros AL Acc Chem Res; 2013 Jun; 46(6):1242-51. PubMed ID: 23461547 [TBL] [Abstract][Full Text] [Related]
19. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects. Binks DJ Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696 [TBL] [Abstract][Full Text] [Related]
20. A semiconductor source of triggered entangled photon pairs. Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]