These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 20931247)

  • 21. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders.
    Villavicencio-Tejo F; Olesen MA; Navarro L; Calisto N; Iribarren C; García K; Corsini G; Quintanilla RA
    Neurotox Res; 2023 Dec; 42(1):4. PubMed ID: 38103074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone Methylation Regulation in Neurodegenerative Disorders.
    Basavarajappa BS; Subbanna S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of alpha-synuclein in Parkinson's disease and other neurodegenerative disorders.
    Krüger R; Müller T; Riess O
    J Neural Transm (Vienna); 2000; 107(1):31-40. PubMed ID: 10809401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct functional roles of Vps41-mediated neuroprotection in Alzheimer's and Parkinson's disease models of neurodegeneration.
    Griffin EF; Yan X; Caldwell KA; Caldwell GA
    Hum Mol Genet; 2018 Dec; 27(24):4176-4193. PubMed ID: 30508205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miRNAs as biomarkers of neurodegenerative disorders.
    Viswambharan V; Thanseem I; Vasu MM; Poovathinal SA; Anitha A
    Biomark Med; 2017 Feb; 11(2):151-167. PubMed ID: 28125293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of molecular chaperone in protein-misfolding brain diseases.
    Wankhede NL; Kale MB; Upaganlawar AB; Taksande BG; Umekar MJ; Behl T; Abdellatif AAH; Bhaskaran PM; Dachani SR; Sehgal A; Singh S; Sharma N; Makeen HA; Albratty M; Dailah HG; Bhatia S; Al-Harrasi A; Bungau S
    Biomed Pharmacother; 2022 Mar; 147():112647. PubMed ID: 35149361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration.
    Martin LJ
    Rev Neurosci; 2007; 18(2):115-36. PubMed ID: 17593875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review.
    Cecerska-Heryć E; Pękała M; Serwin N; Gliźniewicz M; Grygorcewicz B; Michalczyk A; Heryć R; Budkowska M; Dołęgowska B
    Cell Mol Neurobiol; 2023 Aug; 43(6):2643-2673. PubMed ID: 37027074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. lncRNA NEAT1: Key player in neurodegenerative diseases.
    Li K; Wang Z
    Ageing Res Rev; 2023 Apr; 86():101878. PubMed ID: 36738893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases.
    Rani N; Alam MM; Jamal A; Bin Ghaffar U; Parvez S
    Ageing Res Rev; 2023 Nov; 91():102036. PubMed ID: 37598759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Overview of Potential Targets for Treating Amyotrophic Lateral Sclerosis and Huntington's Disease.
    de Paula CZ; Gonçalves BD; Vieira LB
    Biomed Res Int; 2015; 2015():198612. PubMed ID: 26295035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders.
    Olesen MA; Villavicencio-Tejo F; Quintanilla RA
    Transl Neurodegener; 2022 Jul; 11(1):36. PubMed ID: 35787292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. microRNAs and Neurodegenerative Diseases.
    Qiu L; Tan EK; Zeng L
    Adv Exp Med Biol; 2015; 888():85-105. PubMed ID: 26663180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis.
    Yang J; Li H; Zhao Y
    Chembiochem; 2023 Aug; 24(16):e202300017. PubMed ID: 37440197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of endoplasmic reticulum stress in neurodegenerative disease.
    Xiang C; Wang Y; Zhang H; Han F
    Apoptosis; 2017 Jan; 22(1):1-26. PubMed ID: 27815720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathway analysis of two amyotrophic lateral sclerosis GWAS highlights shared genetic signals with Alzheimer's disease and Parkinson's disease.
    Shang H; Liu G; Jiang Y; Fu J; Zhang B; Song R; Wang W
    Mol Neurobiol; 2015 Feb; 51(1):361-9. PubMed ID: 24647822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tau-induced neurodegeneration: a clue to its mechanism.
    del C Alonso A; Iqbal K
    J Alzheimers Dis; 2005 Dec; 8(3):223-6. PubMed ID: 16340080
    [No Abstract]   [Full Text] [Related]  

  • 39. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial pathobiology in Parkinson's disease and amyotrophic lateral sclerosis.
    Martin LJ
    J Alzheimers Dis; 2010; 20 Suppl 2():S335-56. PubMed ID: 20413846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.