These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20931349)

  • 1. Marginal Structural Models: unbiased estimation for longitudinal studies.
    Moodie EE; Stephens DA
    Int J Public Health; 2011 Feb; 56(1):117-9. PubMed ID: 20931349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marginal Structural Models with Counterfactual Effect Modifiers.
    Zheng W; Luo Z; van der Laan MJ
    Int J Biostat; 2018 Jun; 14(1):. PubMed ID: 29883322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
    Zheng W; Petersen M; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):233-52. PubMed ID: 27227723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal models adjusting for time-varying confounding-a systematic review of the literature.
    Clare PJ; Dobbins TA; Mattick RP
    Int J Epidemiol; 2019 Feb; 48(1):254-265. PubMed ID: 30358847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Directed Acyclic Graphs to detect limitations of traditional regression in longitudinal studies.
    Moodie EE; Stephens DA
    Int J Public Health; 2010 Dec; 55(6):701-3. PubMed ID: 20838848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.
    Schnitzer ME; Lok JJ; Bosch RJ
    Biostatistics; 2016 Jan; 17(1):165-77. PubMed ID: 26224070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. History-adjusted marginal structural models for estimating time-varying effect modification.
    Petersen ML; Deeks SG; Martin JN; van der Laan MJ
    Am J Epidemiol; 2007 Nov; 166(9):985-93. PubMed ID: 17875580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted minimum loss based estimation of causal effects of multiple time point interventions.
    van der Laan MJ; Gruber S
    Int J Biostat; 2012; 8(1):. PubMed ID: 22611591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
    Shinozaki T; Suzuki E
    J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review.
    Suarez D; Borràs R; Basagaña X
    Epidemiology; 2011 Jul; 22(4):586-8. PubMed ID: 21540744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
    Breskin A; Cole SR; Westreich D
    Epidemiology; 2018 May; 29(3):352-355. PubMed ID: 29384789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted maximum likelihood based causal inference: Part I.
    van der Laan MJ
    Int J Biostat; 2010; 6(2):Article 2. PubMed ID: 21969992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
    VanderWeele TJ; Vansteelandt S
    Am J Epidemiol; 2011 Nov; 174(10):1197-203. PubMed ID: 22058231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Controlled Direct Effects in Longitudinal Mediation Analyses with Latent Variables in Randomized Studies.
    Loh WW; Moerkerke B; Loeys T; Poppe L; Crombez G; Vansteelandt S
    Multivariate Behav Res; 2020; 55(5):763-785. PubMed ID: 31726876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginal Structural Models for Life-Course Theories and Social Epidemiology: Definitions, Sources of Bias, and Simulated Illustrations.
    Gilsanz P; Young JG; Glymour MM; Tchetgen Tchetgen EJ; Eng CW; Koenen KC; Kubzansky LD
    Am J Epidemiol; 2022 Jan; 191(2):349-359. PubMed ID: 34668974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.
    Gruber S; Logan RW; Jarrín I; Monge S; Hernán MA
    Stat Med; 2015 Jan; 34(1):106-17. PubMed ID: 25316152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing mediation using marginal structural models in the presence of confounding and moderation.
    Coffman DL; Zhong W
    Psychol Methods; 2012 Dec; 17(4):642-64. PubMed ID: 22905648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.