BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20931992)

  • 1. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates.
    Banerjee I; Mondal D; Martin J; Kane RS
    Langmuir; 2010 Nov; 26(22):17369-74. PubMed ID: 20931992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus.
    Sah U; Sharma K; Chaudhri N; Sankar M; Gopinath P
    Colloids Surf B Biointerfaces; 2018 Feb; 162():108-117. PubMed ID: 29190461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-activated nanotube-porphyrin conjugates as effective antiviral agents.
    Banerjee I; Douaisi MP; Mondal D; Kane RS
    Nanotechnology; 2012 Mar; 23(10):105101. PubMed ID: 22361811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates.
    Pangule RC; Brooks SJ; Dinu CZ; Bale SS; Salmon SL; Zhu G; Metzger DW; Kane RS; Dordick JS
    ACS Nano; 2010 Jul; 4(7):3993-4000. PubMed ID: 20604574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity.
    Kumari S; Rajit Prasad S; Mandal D; Das P
    J Colloid Interface Sci; 2019 Oct; 553():228-238. PubMed ID: 31212225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of bacterial pathogens by carbon nanotubes in suspensions.
    Arias LR; Yang L
    Langmuir; 2009 Mar; 25(5):3003-12. PubMed ID: 19437709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Uptake and Photodynamic Inactivation of Staphylococci by Ga(III)-Protoporphyrin IX.
    Morales-de-Echegaray AV; Maltais TR; Lin L; Younis W; Kadasala NR; Seleem MN; Wei A
    ACS Infect Dis; 2018 Nov; 4(11):1564-1573. PubMed ID: 30175917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of microbial growth by carbon nanotube networks.
    Olivi M; Zanni E; De Bellis G; Talora C; Sarto MS; Palleschi C; Flahaut E; Monthioux M; Rapino S; Uccelletti D; Fiorito S
    Nanoscale; 2013 Oct; 5(19):9023-9. PubMed ID: 23934344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity.
    Zhou J; Qi X
    Lett Appl Microbiol; 2011 Jan; 52(1):76-83. PubMed ID: 21138451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of Staphylococcus aureus.
    Moriwaki Y; Caaveiro JM; Tanaka Y; Tsutsumi H; Hamachi I; Tsumoto K
    Biochemistry; 2011 Aug; 50(34):7311-20. PubMed ID: 21797259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite.
    Bogdanović U; Vodnik V; Mitrić M; Dimitrijević S; Škapin SD; Žunič V; Budimir M; Stoiljković M
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1955-66. PubMed ID: 25552193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.
    Azizi-Lalabadi M; Hashemi H; Feng J; Jafari SM
    Adv Colloid Interface Sci; 2020 Oct; 284():102250. PubMed ID: 32966964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties.
    De B; Gupta K; Mandal M; Karak N
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():74-83. PubMed ID: 26249567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity.
    Grover N; Borkar IV; Dinu CZ; Kane RS; Dordick JS
    Enzyme Microb Technol; 2012 May; 50(6-7):271-9. PubMed ID: 22500892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers.
    Nepal D; Balasubramanian S; Simonian AL; Davis VA
    Nano Lett; 2008 Jul; 8(7):1896-901. PubMed ID: 18507479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control.
    Gunawan P; Guan C; Song X; Zhang Q; Leong SS; Tang C; Chen Y; Chan-Park MB; Chang MW; Wang K; Xu R
    ACS Nano; 2011 Dec; 5(12):10033-40. PubMed ID: 22077241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of DNA-porphyrin hybrid molecules for the creation of antimicrobial nanonetwork.
    Kumari R; Khan MI; Bhowmick S; Sinha KK; Das N; Das P
    J Photochem Photobiol B; 2017 Jul; 172():28-35. PubMed ID: 28514711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen diffusion into multiwalled carbon nanotube doped polystrene latex films using fluorescence technique.
    Yargı O; Uğur S; Pekcan O
    J Fluoresc; 2013 May; 23(3):357-66. PubMed ID: 23334487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties.
    Qi X; Poernomo G; Wang K; Chen Y; Chan-Park MB; Xu R; Chang MW
    Nanoscale; 2011 Apr; 3(4):1874-80. PubMed ID: 21431164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.