These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20931992)

  • 1. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates.
    Banerjee I; Mondal D; Martin J; Kane RS
    Langmuir; 2010 Nov; 26(22):17369-74. PubMed ID: 20931992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus.
    Sah U; Sharma K; Chaudhri N; Sankar M; Gopinath P
    Colloids Surf B Biointerfaces; 2018 Feb; 162():108-117. PubMed ID: 29190461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-activated nanotube-porphyrin conjugates as effective antiviral agents.
    Banerjee I; Douaisi MP; Mondal D; Kane RS
    Nanotechnology; 2012 Mar; 23(10):105101. PubMed ID: 22361811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates.
    Pangule RC; Brooks SJ; Dinu CZ; Bale SS; Salmon SL; Zhu G; Metzger DW; Kane RS; Dordick JS
    ACS Nano; 2010 Jul; 4(7):3993-4000. PubMed ID: 20604574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity.
    Kumari S; Rajit Prasad S; Mandal D; Das P
    J Colloid Interface Sci; 2019 Oct; 553():228-238. PubMed ID: 31212225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of bacterial pathogens by carbon nanotubes in suspensions.
    Arias LR; Yang L
    Langmuir; 2009 Mar; 25(5):3003-12. PubMed ID: 19437709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Uptake and Photodynamic Inactivation of Staphylococci by Ga(III)-Protoporphyrin IX.
    Morales-de-Echegaray AV; Maltais TR; Lin L; Younis W; Kadasala NR; Seleem MN; Wei A
    ACS Infect Dis; 2018 Nov; 4(11):1564-1573. PubMed ID: 30175917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of microbial growth by carbon nanotube networks.
    Olivi M; Zanni E; De Bellis G; Talora C; Sarto MS; Palleschi C; Flahaut E; Monthioux M; Rapino S; Uccelletti D; Fiorito S
    Nanoscale; 2013 Oct; 5(19):9023-9. PubMed ID: 23934344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity.
    Zhou J; Qi X
    Lett Appl Microbiol; 2011 Jan; 52(1):76-83. PubMed ID: 21138451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of Staphylococcus aureus.
    Moriwaki Y; Caaveiro JM; Tanaka Y; Tsutsumi H; Hamachi I; Tsumoto K
    Biochemistry; 2011 Aug; 50(34):7311-20. PubMed ID: 21797259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite.
    Bogdanović U; Vodnik V; Mitrić M; Dimitrijević S; Škapin SD; Žunič V; Budimir M; Stoiljković M
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1955-66. PubMed ID: 25552193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.
    Azizi-Lalabadi M; Hashemi H; Feng J; Jafari SM
    Adv Colloid Interface Sci; 2020 Oct; 284():102250. PubMed ID: 32966964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties.
    De B; Gupta K; Mandal M; Karak N
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():74-83. PubMed ID: 26249567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity.
    Grover N; Borkar IV; Dinu CZ; Kane RS; Dordick JS
    Enzyme Microb Technol; 2012 May; 50(6-7):271-9. PubMed ID: 22500892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers.
    Nepal D; Balasubramanian S; Simonian AL; Davis VA
    Nano Lett; 2008 Jul; 8(7):1896-901. PubMed ID: 18507479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control.
    Gunawan P; Guan C; Song X; Zhang Q; Leong SS; Tang C; Chen Y; Chan-Park MB; Chang MW; Wang K; Xu R
    ACS Nano; 2011 Dec; 5(12):10033-40. PubMed ID: 22077241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of DNA-porphyrin hybrid molecules for the creation of antimicrobial nanonetwork.
    Kumari R; Khan MI; Bhowmick S; Sinha KK; Das N; Das P
    J Photochem Photobiol B; 2017 Jul; 172():28-35. PubMed ID: 28514711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen diffusion into multiwalled carbon nanotube doped polystrene latex films using fluorescence technique.
    Yargı O; Uğur S; Pekcan O
    J Fluoresc; 2013 May; 23(3):357-66. PubMed ID: 23334487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties.
    Qi X; Poernomo G; Wang K; Chen Y; Chan-Park MB; Xu R; Chang MW
    Nanoscale; 2011 Apr; 3(4):1874-80. PubMed ID: 21431164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.