These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 20931994)
1. Energy loss of the electron system in individual single-walled carbon nanotubes. Santavicca DF; Chudow JD; Prober DE; Purewal MS; Kim P Nano Lett; 2010 Nov; 10(11):4538-43. PubMed ID: 20931994 [TBL] [Abstract][Full Text] [Related]
2. Van der Waals interaction-tuned heat transfer in nanostructures. Sun T; Wang J; Kang W Nanoscale; 2013 Jan; 5(1):128-33. PubMed ID: 23147396 [TBL] [Abstract][Full Text] [Related]
4. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Bonini N; Garg J; Marzari N Nano Lett; 2012 Jun; 12(6):2673-8. PubMed ID: 22591411 [TBL] [Abstract][Full Text] [Related]
5. Strain dependence of the heat transport properties of graphene nanoribbons. Yeo PS; Loh KP; Gan CK Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343 [TBL] [Abstract][Full Text] [Related]
6. Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm. Li Z; Tan S; Bozorg-Grayeli E; Kodama T; Asheghi M; Delgado G; Panzer M; Pokrovsky A; Wack D; Goodson KE Nano Lett; 2012 Jun; 12(6):3121-6. PubMed ID: 22563928 [TBL] [Abstract][Full Text] [Related]
8. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". Mingo N; Broido DA Nano Lett; 2005 Jul; 5(7):1221-5. PubMed ID: 16178214 [TBL] [Abstract][Full Text] [Related]
9. Exciton energy transfer in pairs of single-walled carbon nanotubes. Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189 [TBL] [Abstract][Full Text] [Related]
11. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube. Hirotani J; Ikuta T; Nishiyama T; Takahashi K J Phys Condens Matter; 2013 Jan; 25(2):025301. PubMed ID: 23196929 [TBL] [Abstract][Full Text] [Related]
12. Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures. Pumarol ME; Rosamond MC; Tovee P; Petty MC; Zeze DA; Falko V; Kolosov OV Nano Lett; 2012 Jun; 12(6):2906-11. PubMed ID: 22524441 [TBL] [Abstract][Full Text] [Related]
13. A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation. Ghosh MM; Roy S; Pabi SK; Ghosh S J Nanosci Nanotechnol; 2011 Mar; 11(3):2196-207. PubMed ID: 21449369 [TBL] [Abstract][Full Text] [Related]
14. Thermal transport in functionalized graphene. Kim JY; Lee JH; Grossman JC ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878 [TBL] [Abstract][Full Text] [Related]
15. Near-field radiative cooling of nanostructures. Guha B; Otey C; Poitras CB; Fan S; Lipson M Nano Lett; 2012 Sep; 12(9):4546-50. PubMed ID: 22891815 [TBL] [Abstract][Full Text] [Related]
16. Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter. Hartmann N; Piredda G; Berthelot J; des Francs GC; Bouhelier A; Hartschuh A Nano Lett; 2012 Jan; 12(1):177-81. PubMed ID: 22175822 [TBL] [Abstract][Full Text] [Related]
20. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Cai W; Moore AL; Zhu Y; Li X; Chen S; Shi L; Ruoff RS Nano Lett; 2010 May; 10(5):1645-51. PubMed ID: 20405895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]