These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 2093243)
1. [The electron microscopic analysis of the mechanism of the insertion of high water permeability domains into the apical membrane of epithelial cells]. Komissarchik IaIu; Snigirevskaia ES Tsitologiia; 1990; 32(11):1084-7. PubMed ID: 2093243 [TBL] [Abstract][Full Text] [Related]
2. [The participation of intracellular membranes in forming highly permeable domains in the plasma membrane of epithelial cells during the vasopressin stimulation of water transport]. Komissarchik IaIu; Snigirevskaia ES Tsitologiia; 1991; 33(11):135-40. PubMed ID: 1819170 [TBL] [Abstract][Full Text] [Related]
3. [Cholesterol localization in the membranes of granular cells in the bladder epithelium of the frog during stimulated water transport]. Kever LV; Komissarchik IaIu; Korolev EV Tsitologiia; 1988 May; 30(5):524-31. PubMed ID: 3262945 [TBL] [Abstract][Full Text] [Related]
4. [Ultrastructure of the apical plasma membrane of the granular cells in the frog bladder during cobalt-ion decrease in the vasopressin effect]. Komissarchik IaIu; Romanov VI; Snigirevskaia ES; Shakhmatova EI; Natochin IuV Tsitologiia; 1989 May; 31(5):515-22. PubMed ID: 2528228 [TBL] [Abstract][Full Text] [Related]
5. [An ultrastructural study of the apical cytoskeleton of the epithelial cells in the frog bladder with an ADH-dependent and an ADH-independent increase in osmotic permeability]. Komissarchik IaIu; Makarenkova EI; Snigirevskaia ES; Shakhmatova EI; Brudnaia MS; Natochin IuV Tsitologiia; 1996; 38(9):927-33. PubMed ID: 9019895 [TBL] [Abstract][Full Text] [Related]
6. Antidiuretic response: what markers for water channel components? Calamita G; Valenti G; Frigeri A; Svelto M; Bourguet J Boll Soc Ital Biol Sper; 1991 Jun; 67(6):543-53. PubMed ID: 1804235 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of cytoskeleton structural changes in the granular cells of the frog bladder during the stimulation of water transport]. Snigirevskaia ES; Komissarchik IaIu Tsitologiia; 1987 Feb; 29(2):150-5. PubMed ID: 3495056 [TBL] [Abstract][Full Text] [Related]
8. A scanning electron microscopic study of the cytoplasmic surface of the toad bladder luminal membrane. Hays RM; Meiteles L; Fant J; Franki N; Salisbury JL Scan Electron Microsc; 1982; (Pt 2):789-95. PubMed ID: 6820185 [TBL] [Abstract][Full Text] [Related]
9. [Role of ADH-induced intramembrane particle aggregates (author's transl)]. Bourguet J; Chevalier J; Parisi M; Gobin R J Physiol (Paris); 1981; 77(4-5):629-41. PubMed ID: 6268775 [TBL] [Abstract][Full Text] [Related]
10. [Electron microscopic study of the vacuolar system of the granular cells of the frog bladder under the effect of the antidiuretic hormone]. Snigirevskaia ES; Komissarchik IaIu; Natochin IuV; Shakhmatova EI Tsitologiia; 1982 Mar; 24(3):252-6. PubMed ID: 6979120 [TBL] [Abstract][Full Text] [Related]
11. [Electron microscopic study of colonic epithelial cells from the grass frog Rana temporaria under different intensity of water absorption]. Snigirevskaia ES; Komissarchik IaIu; Rodionova EA; Natochin IuV Tsitologiia; 2001; 43(7):639-47. PubMed ID: 11552644 [TBL] [Abstract][Full Text] [Related]
12. [Reorganization of the Golgi apparatus of epithelial cells in the frog bladder in stimulation of water transport by antidiuretic hormone]. Snigirevskaia ES; Komissarchik IaIu Tsitologiia; 1988 Feb; 30(2):163-9. PubMed ID: 3259744 [TBL] [Abstract][Full Text] [Related]
13. [Electron microscopic research on the mitochondria-rich bladder cells of the frog]. Snigirevskaia ES; Kever LV; Komissarchik IaIu Tsitologiia; 1989 Sep; 31(9):1020-8. PubMed ID: 2623766 [TBL] [Abstract][Full Text] [Related]
14. [A morphofunctional analysis of the changes in the Golgi apparatus in the epitheliocytes of the frog bladder under conditions of the vasopressin stimulation of water transport]. Snigirevskaia ES; Komissarchik IaIu Tsitologiia; 1995; 37(12):1216-22. PubMed ID: 8714353 [TBL] [Abstract][Full Text] [Related]
15. 76 and 14 kDa polypeptides, two major components released from amphibian urinary bladder epithelium. Localization and potential role. Dassouli A; Gobin R; Grossetete J; Rouchon M; Ripoche P; Chevalier J Biol Cell; 1989; 66(1-2):131-43. PubMed ID: 2508972 [TBL] [Abstract][Full Text] [Related]
16. A novel type of microtubules in the frog urinary bladder epithelium stimulated by vasopressin. Snigirevskaya ES; Komissarchik JJ J Submicrosc Cytol Pathol; 1993 Jul; 25(3):389-96. PubMed ID: 8402539 [TBL] [Abstract][Full Text] [Related]
17. Membrane structural studies of the action of vasopressin. Wade JB Fed Proc; 1985 Aug; 44(11):2687-92. PubMed ID: 3894054 [TBL] [Abstract][Full Text] [Related]
19. [Ultrastructure and elemental composition of frog bladder granular epithelial cells in normal state and upon stimulation of water transport]. Gorshkov AN; Korolev EV; Komissarchik IaIu Tsitologiia; 2000; 42(12):1113-24. PubMed ID: 11213725 [TBL] [Abstract][Full Text] [Related]
20. [Structural and functional characteristics of the cellular reaction of the bladder epithelium in the frog to calcium extraction from the apical and basolateral membranes]. Komissarchik IaIu; Natochin IuV; Romanov VI; Snigirevskaia ES; Shakhmatova EI Tsitologiia; 1986 May; 28(5):506-11. PubMed ID: 3090753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]